1312N966

IMSc CS Sem.-7 Examination

Computer Oriented Numerical Methods

Time: 3-00 Hours

December-2024

[Max. Marks: 70

instructions:

- Write both the Sections in the separate answer book.
- Both Sections have equal weightage

SECTION - I

- Q.1 Answer briefly: (6)
- a) The number of strips required in Simpson's 3/8 rule is a multiple of _____
- For the solution of differential equations, Euler's method is preferred over Taylor's series because
- c) Use Descartes' Rule to identify number of positive and negative roots of $2x^7 x^5 + 4x^3 5 = 0$
- Q.2 a) Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to two decimal places between 2 and 3.
- Q.2 b) Find the root of the following using Fixed Point Method $xe^x = 1$ starting with $x_0 = 1$ correct to two decimal places (7)
- Q.2 a) Fit a curve of the form $y = ae^{bx}$ to the following data: (7)

	Х	0	1	2	3
-	γ	1.05	2.10	3.85	8.30

- Q.2 b) Fit a straight line to the following data and compute y when x = 150: (8)
 - X
 50
 70
 100
 120

 Y
 12
 15
 21
 25
- Q. 3 Attempt any two (14)
 - a) Explain the advantages and disadvantages of Bisection Method.
 - b) Explain the predictor-corrector methods.
 - c) Explain the different sources of error.

SECTION - II

- Q. 4 Answer any two of the following:
 - a) Use Simpson's 1/3 rule to find $\int_0^1 \frac{1}{1+x^2} dx$ using 4 intervals
 - b) The table below shows the temperature f(x) as a function of time:

х	1	2	3	4	5	6	7
f(x)	81	75	80	83	78	70	60

Use Trapezoidal rule to estimate $\int_1^7 f(x) dx$

c) Evaluate $\int_{-1}^{1} \frac{1}{1+x^2} dx$ using Gauss formula for n=2.

(6)

Q.5 a) Obtain the cubic spline for the following data given that $M_0 = M_3 = 0$

Х	0	1	2	3	
Y	2	-6	-8	2	

(15)

OR

Q.5 a) Find the values of y when x = 160 for the following data:

		/					
X	100	150	200	250	300	350	400
Y	10.63	13.03	15.04	16.81	18.42	19.90	21.27

(8)

Q.5 b) Given the following values evaluate f(9), using Lagrange's formula

Х	5	7	11	13	17	
Υ	150	392	1452	2366	5202	

(7)

Q. 6 Attempt any two

(14)

- a) Solve y' = x + y, y(0) = 1 by Taylor's series method. Hence find the values of y at x = 0.1 and x = 0.2 with h = 0.1
- b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y(0) = 1; find y for x = 0.1 by Euler's method using h = 0.02
- c) Apply the Runge-Kutta method to find the approximate value of y for x = 0.1, in steps of 0.1, if $dy/dx = x + y^2$, y = 1 where x = 0.