1206E462

Candidate's Seat No:_____

M.Sc. AIML & AIML (DS) Semester 2 Examination Machine Learning

Time: 3-00 Hours] June-2024

[Max. Marks: 100

SECTION I

Q1.(a) Explain the following (ANY three):

[09]

- Feature Selection methods
- ii. Outlier detection and handling
- iii. Missing values handling
- iv. Distance measures
- Q1.(b) Explain k-means method of clustering . Write algorithm. How do u select value of k?

[09]

Q2. With respect to SVM, answer the following:

[16]

- i. HyperPlane
 - ii. Support Vectors
 - iii. Kernel
 - iv. Margin
 - v. Gamma value
 - vi. C value
- Q3 Why knn is called so? Explain knn method for classification with example. [16]
 How do u find optimal value of k? does choosing a particular distance
 measure has any effect on performance of classifier?

OR

- Q3. What is ensemble approach? Give difference between Bagging and [16] Boosting. Explain **ANY ONE** of given algorithms:
 - i. AdaBoost
 - ii. Random Forest

(P.T.O)

SECTION II

Q4. Why Naïve Bayes algorithm is called so? For the given dataset, find probability of for each class for the instance X={Color=Green, Legs=2, Height=Tall, Smelly=No}

No	Color	Legs	Height	Smelly	Species
1	White	3	5nort	Yes	M
2	Green	2	Tall	No	M
3	Green	3	Shart	Yes	Μ
4	White	3	Short	Yes	M
5	Green	2	Short	No	Н
6	White	2	Tall	No	Н
7	White	2	Tall	No	7
8	White	2	Short	Yes	H

Q5. For the given data set , find Entropy, Information gain, Gini Index and Chi [16] Sqaure values for the decision tree

0utau*	Temperature	Humbaty	Vinay	Pa, 7
1,	7 m m	* ¢r	·} 52	1.5
5400	***	* 5*	:*_£	1-0
overcast	~a*	7.97	28 34 4	* # 1
73.0	and the		fa se	163
79 M	00.0	*o~~a	ra se	٠ês
rain	coc	no ma	1722	' -0
0 / e rcast		rorma	20-8	*#1
5wnnx	rhous,	~ : -	fa se	No
EUC'S	C0:0:	*\$**** a	fa sa	*45
*2 *	Micros 1996. "Next	***************************************	13 35 E	*2:
3457y	~ <i>4</i>	~ <u>~</u> . * * * <u>4</u>	15.4	-4:
ole roast		* ·5 *	:=	183
o, ercast	*5*	ಗರ್ಥ <u>್</u> ತ	13.54	ras
′a .^		* * *	71.8	No.

Q6. Explain Simple Linear Regression. With example explain method of getting [18] best fit line . Explain the evaluation parameters like R2, RSME and RSE

OR

Q6. Explain the following:

[18]

- i. Bernaulli distribution and Bernaullis trials
- ii. Logistic regression for classification