0404N68

Candidate's	Seat No	;
Candidate S	seat No	:

M.Sc Semester-4 Examination

509

Mathematics (EA)

April-2024

[Max. Marks: 70

7

7

Instructions:

Time: 2-30 Hours]

- (1) All Questions are compulsory.
- (II) Write the question number in your answer book as shown in the question paper.
- (III) The figure to the right indicates marks of the question.
- Q.1 (A) Prove that the highest power of a prime p which divide n! is $\sum_{k=1}^{t} \left[\frac{n}{p^k}\right]$, where $p^t \le n < p^{t+1}$.
 - (B) Define Mobius function. Also state and prove Mobius inversion formula.

OR

- (A) Prove that every even perfect number is of the form $2^{k-1}(2^k 1)$.
- (B) Determine all solutions in the positive integers of the equation 54x + 21y = 906.
- Q.2 (A) State and prove Wilson's theorem.
 - (B) Solve: $2x \equiv 1 \pmod{5}$, $4x \equiv 1 \pmod{7}$, $5x \equiv 9 \pmod{11}$.

OR

- (A) Show that for $k \ge 3$, the integer 2^k has no primitive root.
- (B) Using indices for a primitive root of 11, solve the congruence $7x^3 \equiv 3 \pmod{11}$.
- Q.3 (A) For odd prime p, prove that $(2/p) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8} \\ -1 & \text{if } p \equiv \pm 3 \pmod{8} \end{cases}$
 - (B) If p is an odd prime and (a, p) = 1. Then prove that a is a quadratic residue of p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$.

OR

- (A) For odd prime p with (a, p) = 1, prove that the congruence $x^2 \equiv a \pmod{p^n}$, $n \ge 1$ has solution if and only if (a/p) = 1.
- (B) Solve the congruence $x^2 \equiv 23 \pmod{7^3}$.

Q.4	(A)	Prove that value of any infinite continued fraction is an irrational number.						
	(B)	Obtain all primitive Pythagorean triples x , y , z in which $x = 40$.						
	OR							
	(A)	Define Pythagorean trian	Define Pythagorean triangle. Prove that radius of the inscribed circle of a Pythagorean 7					
		triangle is always an integer.						
	(B)	By means of continued fractions determine the general solutions of Diophantine						
		equation $19x + 15y = 1$.						
Q.5		Attempt any seven of the following.						
	(1)	The highest power of 3 which divides 31! is						
		(A) 10	(B) 12					
		(c) 13	(D) 14					
	(2)	(2) Values of $\sigma(n)$ and $\tau(n)$ for $n=2700$ are						
		(A) 36 and 8680	(B) 36 and 868					
		(c) 12 and 8680	(D) 12 and 4340					
	(3)	Which of the following equation is solvable in integers?						
		(A) $6x + 51y = 22$	(B) $11x + 22y = 121$					
		(c) $14x + 35y = 93$	(D) $21x + 28y = 58$					
	(4)	Unit digit of 3 ¹⁰⁰ is						
		(A) 3	(B) 9					
		(c) 1	(D) 7					
	(5)	The remainder when 2(26!) divided by 29 is						
		(A) 0	(B) 1					
		(c) 26	(D) 28					
((6)	Order of 2 modulo 23 is						
		(A)11	(B) 12					
		(c)22	(D) none of these					
((7)	Which of the following cong	uence is not solvable?					
		$(A) x^2 \equiv 4 (mod 13)$	$(B) x^2 \equiv 3 (mod 17)$					
		(c) $x^2 \equiv 12 (mod 13)$	(D) $x^2 \equiv 2 \pmod{17}$					

(8)	Index of 6 relative to primitive root 2 of 11 is		
	(A) 9	(B) 6	
	(c)5	(D) 4	
(9)	Which of the following integer is quadratic residue of 13?		
	(A) 6	(B) 8	
	(c) 7	(D) 9	
(10)	The finite simple continued fraction of $\frac{51}{19}$ is		
	(A) [3;2,1,2,6]		(B) [2;1,2,6]
	(c) [3;1,1,2,6]		(D) none of these
(11)	If (x, y, z) is a primitive Pythagorean triple, then		
	(A) $gcd(x, y) = 1$		(B) $gcd(x,z) = 1$
	(c) $gcd(y, z) = 1$		(D) All of these
(12)	The value of finite continued fraction [0; 2, 1, 2] is		
	(A) $\frac{3}{8}$	(B) $\frac{6}{3}$	
	(c) $\frac{3}{8}$	(D) $\frac{4}{3}$	

0404N68 ~ 4

Candidate's Seat No :___

M.Sc Semester-4 Examination

509

Mathematics (EB)

Time: 2-30 Hours]

April-2024

[Max. Marks: 70

Instructions: All questions are compulsory. Use of non-programmable scientific calculator is allowed.

Q.1 (a) Find Laplace transform of the function (07)

$$f(t) = \begin{cases} \frac{2t}{T}, & 0 \le t \le \frac{T}{2} \\ \frac{2}{T}(T-t), & \frac{T}{2} \le t \le T \end{cases} \qquad f(t+T) = f(t)$$

- Find the inverse Laplace transform of $\frac{1}{(s-2)(s^2+1)}$ by partial fraction method. (07)
- Q.1 State the convolution theorem and find the inverse Laplace transform of $\frac{s^2}{(s^2+a^2)^2}$ (a) (07)
 - Using the Laplace transforms, find the solution of the initial value problem (b) (07)

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$
, where $y = 2$, $\frac{dy}{dx} = -4$ at $x = 0$

- Find the Fourier series of $f(x) = x^2$ in the interval $(-\pi, \pi)$ and hence, deduce that Q.2(07) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$
 - Find Fourier transform of the function (b) (07)

$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & otherwise \end{cases}$$

- Q.2 Find the eigenvalues and eigenfunctions of the Strum-Liouville problem: (a) $y'' + \mu y = 0,$
 - y(0)=0,(b) Using Fourier Integral representation, show that (07)

$$\int_0^\infty \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^2} d\omega = \begin{cases} \frac{0}{\pi} & x < 0\\ \frac{\pi}{2} & x = 0\\ \pi e^{-x} & x > 0 \end{cases}$$

- Q.3 (a) Find Z-transform of $\sin \alpha k$, $k \ge 0$ (07)
 - Find inverse Z-transform of $\frac{z}{(z-1)(z-2)}$ by residue method. (b) (07)

- Solve the difference equation $6y_{k+2} y_{k+1} y_k = 0$, y(0) = 0, y(1) = 1 by Q.3 (a) (07)Z-transform.
 - Find Z-transform of $\cosh\left(\frac{k\pi}{2} + \alpha\right)$ (b) (07)
- Evaluate $\int_0^a x (a^2 x^2) J_0(sx) dx$ Q.4 (07)
 - I. Find the Hankel transform of $\frac{e^{-ax}}{x^2}$, n = 1(07)

(07)

II. Find $H^{-1}[s^{-2}e^{-as}]$ when n = 1

OR

Q.4 (a) Show that if n = 0, the Hankel transform

(07)

$$H\left\{\frac{\sin ax}{x}\right\} = \begin{cases} 0 & \text{if } s > a\\ \frac{1}{\sqrt{a^2 - s^2}} & \text{if } 0 < s < a \end{cases}$$

(b) Prove Linearity property of Hankel transform and find the Hankel transform of

 $f(x) = \begin{cases} 1 & 0 < x < a, & n = 0 \\ 0 & x > a, & n = 0 \end{cases}$

Q.5 Attempt any SEVEN out of TWELVE:

(14)

(07)

- (1) Find Laplace transform of $t \cos at$
- (2) Find Laplace transform of sint u(t-4)
- (3) Find the inverse Laplace transform of $\frac{s+3}{s^2+2s+1}$
- (4) Find the fundamental period of $\sin 2x$, $\cos 2\pi x$
- (5) State Bessel's and Parseval's identity.
- (6) Define: Fourier sine and cosine transform.
- (7) Find Z-transform of discrete unit step $U(k) = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$
- (8) Find Z-transform of the sequence $\{a^k\}, k \ge 0$
- (9) Write down the sequence $\{f(k)\}$ where $f(k) = \frac{1}{4^k}$, $-3 \le k \le 4$
- (10) Define: Hankel transform
- (11) Find the Hankel transform of e^{-ax} , n = 1
- (12) Find $H^{-1}[e^{-as}]$ when n = 0

**