0304N36

Candidate's	Seat No:	

M.Sc Semester-4 Examination

508

Time: 2-30 Hours] Mathematics
April-2024

[Max. Marks: 70

- 1. (A) Show that the factor ring of the Gaussian integers $\mathbb{Z}[i]/\langle 2-i\rangle$ is a field. How many elements does this field have? Explain.
 - (B) Let R be a commutative ring with unity and let A be an ideal of R. Show that R/A is a field if and only if A is maximal.

OR

- 1. (A) Let R be a commutative ring with unity. Suppose that the only ideals of ring R are $\{0\}$ and R. Show that R is a field. Does the converse hold? Explain.
 - (B) Let ϕ be a ring homomorphism from a ring R to a ring S. Prove the following: 7
 - (i) ϕ is an isomorphism if and only if ϕ is onto and Ker $\phi = \{0\}$.
 - (ii) If ϕ is an isomorphism from R onto S, then ϕ^{-1} is an isomorphism from S onto R.
- 2. (A) Let F be a field and let $p(x) \in F[x]$. Prove that $\langle p(x) \rangle$ is a maximal ideal in F[x] if and only if p(x) is irreducible over F.
 - (B) State (without proof) mod p irreducibility test. Discuss the irreducibility of the polynomial $f(x) = x^5 + 2x + 4$ over \mathbb{Q} .

OR

2. (A) Show that $x^2 + 1$ is irreducible over \mathbb{Z}_3 . Show that every element of the field $F = \mathbb{Z}$

Show that every element of the field $F = \mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$ can be written in the form $ax + b + \langle x^2 + 1 \rangle$, where $a, b \in \mathbb{Z}_3$.

Find the inverse of $x + 1 + \langle x^2 + 1 \rangle$ in the field F.

7

(B) Define Euclidean domain.

Prove that every euclidean domain is a principal ideal domain.

7

3. (A) Define splitting field of a polynomial $f(x)$ over a field F . Find the splitting field E of $x^4 + 1$ over \mathbb{Q} . Find the degree $[E:\mathbb{Q}]$.						
(B) If K is an algebraic extension of that K is an algebraic extension of		ic extension of F , prove 7				
OR						
(A) Consider $f(x) = x^3 + x^2 + 1$ over \mathbb{Z}_2 . Let a be a zero of $f(x)$ in the field $F = \mathbb{Z}_2[x]/\langle x^3 + x^2 + 1 \rangle$. Find the other zeros of $f(x)$ in F .						
(B) Draw the subfield lattices of $GF(3^{18})$ and $GF(2^{30})$.						
4. (A) Let $F = \mathbb{Q}(\sqrt[4]{2}, i)$. Find the Galois group $Gal(F/\mathbb{Q}(i))$. Discuss the lattice of subgroups of $Gal(F/\mathbb{Q}(i))$ and the lattice of subfields of F .						
(B) Define solvable group. Show that S_n is solvable when $n \leq 4$.						
OR						
	Oit					
4. (A) Let F be a field of characteristic 0 and let $a \in F$. If E is the splitting field of $x^n - a$ over F , prove that the Galois group $Gal(E/F)$ is solvable.						
(B) Define cyclotomic polynomial $\Phi_n(x)$. Find $\Phi_n(x)$, for $n=1,2,3,4,5,6$.						
5. Attempt any seven of the following.						
(1) Which of the following are the zero divisors of \mathbb{Z}_{22} ?						
(A) 2 (B) 4	(C) 3	(D) 8				
(2) What is the characteristic of $\mathbb{Z}[i]/\langle 2+i\rangle$?						
(A) 0 (B) 4	(C) 5 (D) 2					
(3) Consider the ring homomorphism ϕ for $\phi = \underline{\hspace{1cm}}$.		$a+bi \rightarrow a-bi$. Then,				
(A) {0}	(C) C					
(B) ℝ	(D) $\{a + bi \mid a, b \in A\}$	$\in \mathbb{Z} \}$				

(4) The number of zeros of $x^2 + 3x + 2$ in \mathbb{Z}_6 is

	(A)	2	(B) 3	(C) 1	(D) 4	
(5)	The ring $Z_2[x]/\langle p(x)\rangle$ is a field with 8 elements, where $p(x)$ is					
	(A)	$x^2 + x$	(B) $x^3 + x + 1$	(C) $x^3 + 1$	(D) $x^2 + x + 1$	
(6)	 Consider the ring of Gaussian integers Z[i]. Which of the following is not true? (A) Z[i] is a subring of the ring of complex numbers. (B) Z[i] is a field. (C) Z[i] is a Euclidean domain. (D) 1,-1,i, and -i are the only units of Z[i]. 					
(7)	What is the splitting field of the polynomial $x^4 - x^2 - 2$ over \mathbb{Q} ?					
	(A)	$\mathbb{Q}(\sqrt{2})$	(B) $\mathbb{Q}(\sqrt[4]{2},i)$	(C) $\mathbb{Q}(i)$	(D) $\mathbb{Q}(\sqrt{2},i)$	
(8)	The minimal polynomial for $\sqrt{2} - \sqrt{3}$ over $\mathbb Q$ is					
	()	$x^4 + 10x^2 + 1$ $x^4 - 10x^2 - 1$		(C) $x^4 - 10x^2 + 1$ (D) $x^4 + 10x^2 - 1$		
(9)	[GF(729):GF(27)] =					
	(A)	2	(B) 3	(C) 4	(D) 9	
(10)	Which of the following real numbers are constructible?					
	(A)	$\sqrt[3]{2}$	(B) $\sqrt{2} + \sqrt{3}$	(C) π	(D) $\sqrt[4]{2}$	
(11)	The order of the Galois group of the field $\mathbb{Q}(\sqrt[4]{2})$ over \mathbb{Q} is					
	(A)	8	(B) 4	(C) 3	(D) 2	
(12)	2) Let $\alpha = \cos(2\pi/9) + i\sin(2\pi/9)$. Then $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is isomorphic to					
	(A)	\mathbb{Z}_2	(B) \mathbb{Z}_3	(C) \mathbb{Z}_6	(D) S_3	