3 /81

0204N16

Candidate's Seat No	
---------------------	--

M.Sc Semester-4 Examination

507

Mathematics April-2024

Time: 2-30 Hours

[Max. Marks: 70

- 1. (A) Find the curvature and torsion of the helix $\bar{\gamma}(t) = (2\cos t, \ 2\sin t, \ 3t) \ (0 \le t < \infty)$. 7
 - (B) Let $\bar{\gamma}$ be a regular curve in \mathbb{R}^3 with never vanishing curvature. Prove that $\bar{\gamma}$ is planar if and only if the torsion of $\bar{\gamma}$ is identicall zero.

OR

- 1. (A) Define the tangent to a curve at a point. If $\bar{\gamma}$ be a smooth curve then prove that the tangent at the point $P = \bar{\gamma}(t_0)$ has the same direction as the vector $\bar{\gamma}'(t_0)$.
 - (B) Find the curvature of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at the vertices.
- 2. (A) Define the osculating paraboloid of a surface at a point. Find the equation of the osculating paraboloid to an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at the point (0,0,c), c > 0. 7
 - (B) Make up the equation of the surface formed by straight lines parallel to a vector \bar{v} , and intersecting a curve $\bar{r} = \bar{r}(u)$.

7

OR

- 2. (A) Find the equation of the tangent plane to a sphere $\bar{r}(u,v) = (2\cos u\cos v,\ 2\cos u\sin v,\ 2\sin u)$ at the point $(2,\ 0,\ 0)$.
 - (B) If a surface is given implicitly by the equation $\phi(x, y, z) = 0$ with $\phi_x^2 + \phi_y^2 + \phi_z^2 \neq 0$, find the equation of the tangent plane to the surface at a point (x_0, y_0, z_0) .
- 3. (A) Show that the u and v curves are orthogonal on helicoid $\bar{r}(u,v)=(u\cos,u\sin v,v)$. 7
 - (B) Define asymptotic on a surface. Find the asymptotic lines on the catenoid $x = \cosh u \cos v, y = \cosh u \sin v, z = u.$

OR

- 3. (A) Show that the surface area of a surface ϕ is given by $\iint_{\phi} \sqrt{EG F^2}$. Show that the areas of the domain on the paraboloids $z = \frac{a^2}{2}(x^2 + y^2)$ and z = axy, projected onto the same domain of xy-plane, are equal.
 - (B) Determine the principal curvature of a (hyperbolic) paraboloid z = 2xy at the point (0,0,0).

4. (A) Define (i) geodesic (ii) a line of curvature on a surface. Show that if a geodesic is a line of curvature then it lies in a plane.					
(B) Prove that the sum of all three interior angles of a geodesic triangle on a sphere is greater than π .					
OR					
(A) Define a geodesic on a surface. Determine a family of geodesics on the cylinder $S = \{(x, y, z)/x^2 + y^2 = 1\}.$					
(B) State (without proof) the second v Bonnet theorem. Define the character	rersion (piecewise smooth curves version) of Gauss teristic of a surface.				
5. Attempt any SEVEN of the following	ing:				
(1) Which of the following is/are unit s_1	peed curve?				
(A) $\bar{\gamma}(t) = (\cos 2t, \sin 2t)$ (B) $\bar{\gamma}(t) = (\cos t/2, \sin t/2)$	(C) $\bar{\gamma}(t) = (\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t)$ (D) $\bar{\gamma}(t) = (\cos^2 t, \sin^2 t, 0)$				
(2) Let $\bar{\gamma}(t) = (e^t, t^2)$. Then the Cartesi	ian form of the curve is				
(A) $y = (lnx)^2$ (B) $y = (lnx^2)$	(C) $y = 2(\ln x)^2$ (D) none of the above				
(3) Consider the logarithmic spiral $\bar{\gamma}(t) = (e^t \cos t, e^t \sin t)$. What is the angle between $\bar{\gamma}(t)$ and $\bar{\gamma}'(t)$?					
(A) $\cos^{-1}(\frac{1}{2})$ (B) $\cos^{-1}(\frac{1}{\sqrt{3}})$	(C) $\cos^{-1}(\frac{1}{\sqrt{2}})$ (D) $\cos^{-1}(\frac{1}{3})$				
(4) What is the Dupin indicatrix of a sur	rface at a hyperbolic point?				
(A) A hyperbola(B) Two conjugate hyperbolas	(C) Two parallel lines(D) A hyperbolic paraboloid				
(5) If all normals to a surface are concurr	rent, the surface must be				
(A) catenoid(B) spherical domain	(C) cylindrical(D) helicoid				

(6)	The normal curvature of a surface along _		directions attains extreme value
	(A) asymptotic	(C)	line of curvature
	(B) principal	(D)	none of the above
(7)	Identify the surface $z^2 = x^2 + y^2$.		
	(A) Cone	(C)	Elliptic cylinder
	(B) Parabolic cylinder	(D)	Elliptic paraboloid
(8)	Which of the following are regular closed	surfac	es?
	(A) A sphere	(C)	A torus
	(B) A plane	(D)	A sphere with a deleted meridian.
(9)	The Mean curvature and Gaussian curvature are	ture o	f a sphere of radius R (respectively
	(A) $\frac{2}{R}$, $\frac{1}{R^2}$ (B) $\frac{1}{R}$, $\frac{1}{R^2}$	(C)	$\frac{1}{R}, \frac{2}{R^2}$ (D) $\frac{1}{R}, \frac{1}{2R^2}$
(10)	The shortest path on the surface $x^2 + y^2 - (-1, -1, -\sqrt{2})$ has length	$+z^{2} =$	= 4, between the points $(1, 1, \sqrt{2})$ an
	(A) 4π (B) π	(C)	2π (D) 4
(11)	Which of the following surfaces have const	ant ne	egative Gaussian curvature?
	(A) A surface of revolution	(C)	A plane
	(B) Pseudo sphere	(D)	A torus
(12)	What is the Euler's characteristic of spher	e ?	L. Tet A
	(A) 1	(C)	3
	(B) 2	(D)	-2
			$(\tilde{z}_{1}, \tilde{z}_{2})$