0201N1440

Candidate's Seat No:

M.Sc. Sem.-1 Examination

404

Mathematics January-2024

Time: 2-30 Hours]

[Max. Marks: 70

1. (A) Solve y'' + 9y = 0 in terms of power series in x.

7

(B) Solve y'' + xy' + y = 0 in terms of power series in x.

7

OR

1. (A) Solve y' + y = 1 in terms of power series in x.

7

(B) Solve $(1+x^2)y'' + xy' + y = 0$ in terms of power series in x.

7

- 2. (A) Verify that the origin is a regular singular point and calculate two independent Frobenius series solutions for the equation $2x^2y'' + x(2x+1)y' y = 0$.
 - (B) Find the indicial equation and its roots for the following equations:
 - (1) $4x^2y'' + (2x^4 5x)y' + (3x^2 + 2)y = 0$
 - $(2) \ x^3y'' 4x^2y' + 3xy = 0$

OR

- 2. (A) Find the general solution of $(x^2 1)y'' + (5x + 4)y' + 4y = 0$ near the singular point x = -1.
 - (B) Determine the nature of the point $x = \infty$ for $x^2y'' + 4xy' + 2y = 0$.
- 3. (A) Show that the Hermite functions are orthogonal on the interval $(-\infty, \infty)$.
 - (B) Obtain the recursion formula $(n+1) P_{n+1}(x) = (2n+1) x P_n(x) n P_{n-1}(x)$ for the Legendre polynomials. Assume that $P_0(x) = 1$ and $P_1(x) = x$, calculate $P_2(x), P_3(x)$ and $P_4(x)$.

OR

3. (A) Show that the Chebyshev polynomials are orthogonal on the interval $-1 \le x \le 1$ with respect to the weight function $(1-x^2)^{-1/2}$.

(B) Prove that
$$\int_{-1}^{1} P_m(x)P_n(x)dx = 0$$
, if $m \neq n$.

4. (A) Show that 7

- (1) $\frac{d}{dx}[x^p J_p(x)] = x^p J_{p-1}(x).$
- (2) $\frac{d}{dx}[x^{-p}J_p(x)] = -x^{-p}J_{p+1}(x).$
- (B) Show that
 - (1) $\cos x = J_0(x) 2J_2(x) + 2J_4(x) \dots$
 - (2) $\sin x = 2J_1(x) 2J_3(x) + 2J_5(x) \dots$

OR

4. (A) Consider the initial value problem

 $y' = 2y - 2x^2 - 3$, y(0) = 2.

Find successive approximations $y_0(x), y_1(x), y_2(x), y_3(x)$ using Picard's method.

(B) State Picard's theorem.(Do not prove.) 7
Does $f(x,y) = xy^2$ satisfy a Lipschitz condition on any rectangle $a \le x \le b$ and $c \le y \le d$. Justify your answer.

- 5. Attempt any seven of the following.
 - (1) The general solution of y'' + y' 2y = 0 is
 - (A) $y = c_1 e^{-x} + c_2 e^{-2x}$

(C) $y = c_1 e^{-2x} + c_2 e^{3x}$

7

14

(B) $y = c_1 + c_2 e^{-2x}$

- (D) $y = c_1 e^x + c_2 e^{-2x}$
- (2) The radius of convergence of $\sum_{n=0}^{\infty} (\frac{2}{3})^n (x)^{2n}$ is
 - (A) $\sqrt{3/2}$

(C) $\frac{3}{2}$

(B) $\sqrt{2/3}$

- (D) ∞
- (3) What are the ordinary points of the equation $x^2y'' + (sinx)y' = 0$?
 - (A) Each nonzero real x
- (C) only negative real x

(B) only positive real x

(D) only x = 0.

- (4) For the equation $(x-1)^2y'' 3(x-1)y' + 3y = 0$, the point x = 1 is
 - (A) an irregular singular point
- (C) an ordinary point
- (B) a regular singular point
- (D) None of the above.
- (5) The indicial equation of the differential equation $2x^2y'' + x(2x+1)y' y = 0$ is
 - (A) $2m^2 + 2m + 1 = 0$

(C) $2m^2 - m - 1 = 0$

(B) $2m^2 + m - 1 = 0$

(D) $m^2 - 2m - 1 = 0$

- (6) $\frac{d}{dx}F(1,b,b,x) =$ _____.
 - (A) $(1-x)^{-1}$

(C) $-(1-x)^{-1}$

(B) $(1-x)^{-2}$

- (D) $-(1-x)^{-2}$
- (7) Denote by $T_n(x)$ the n^{th} Chebyshev polynomial, $n = 0, 1, 2, \ldots$ $T_3(x) = \underline{\hspace{1cm}}$.
 - (A) $4x^3 x$

(C) $4x^3 - 3x^2$

(B) $x^3 - 3x^2$

- (D) $4x^3 2x^2 1$
- (8) If $\sum_{n=0}^{\infty} a_n P_n(x)$ is a Legendre series of a function $f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0 \\ 2x + 1 & \text{if } 0 < x \le 1 \end{cases}$ then $a_2 = \underline{\qquad}$.
 - (A) 0

(C) $\frac{5}{8}$

(B) $\frac{5}{4}$

- (D) $\frac{5}{2}$
- (9) Which of the following are true for Legendre polynomial $P_n(x)$ of degree n?
 - (A) $P_n(1) = -1$

(C) $P_n(1) = 1$

(B) $P_n(-1) = (-1)^n$

- (D) $P_n(-1) = 0$
- (10) Which of the following are true for Bessel functions?
 - (A) $4J_2(x) xJ_1(x) = xJ_3(x)$
 - (B) $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \cos x \right)$
 - (C) $J_5(x)$ and $J_{-5}(x)$ are linearly dependent.
 - (D) $J_0'(x) = J_1(x)$

(11) For $n = 1, 2, 3, \dots, |J_n(x)|$ _____.

 $(A) \le \frac{1}{\sqrt{2}}$

(C) $< \frac{1}{\sqrt{2}}$

 $(B) \ge \frac{1}{\sqrt{2}}$

 $(D) \le \frac{1}{2}$

(12) The initial value problem corresponding to the integral equation $y(x)=1+\int_0^x y(t)dt$ is

- (A) y' y = 0, y(0) = 1
- (B) y' + y = 0, y(0) = 0
- (C) y' y = 0, y(0) = 0
- (D) y' + y = 0, y(0) = 1