0101N1427

Candidate's Seat No :____

M.Sc. Sem.-1 Examination

403

AMS

January-2024

Time: 2-30 Hours

Max. Marks: 70

Instructions: All questions are compulsory. Use of non-programmable scientific calculator is allowed.

- Q.1 (a) Verify that the origin is a singular point of $2x^2y'' + xy' (x+1)y = 0$ and find two (07) independent Frobenius series solutions of it.
 - (b) Describe the nature of the critical point of the system and sketch the trajectory: (07)

$$\frac{dx}{dt} = -3x + 2y, \qquad \frac{dy}{dt} = -2x$$

OR

(a) For the initial value problem $\frac{dy}{dx} = y^2 + \cos^2 x$, y(0) = 0, determine the interval of (07) existence of its solution given that R is the rectangle containing origin,

R:
$$\{(x,y): 0 \le x \le a, |y| \le b, a > \frac{1}{2}, b > 0\}$$

- (b) Find all the eigenvalues and eigenfunctions of the Strum-Liouville problem: $Y'' + \lambda Y = 0 \text{ with } y(0) + y'(0) = 0 \text{ and } y(1) + y'(1) = 0$ (07)
- Q.2 (a) Find the general integral of the following linear PDE: $(y + zx)p (x + yz)q = x^2 y^2$ (07)
 - (b) Find the characteristics of the equation pq = z and determine the integral surface which passes through the straight line x = 1, z = y.

OR

- (a) Find the integral surface of the linear PDE: xp yq = z, which contains circle: $x^2 + y^2 = 1$, z = 1. (07)
- (b) Find the complete integral of the equation $(p^2 + q^2)y = qz$. (07)
- Q.3 (a) Reduce the PDE: $3\frac{\partial^2 z}{\partial x^2} + 10\frac{\partial^2 z}{\partial x \partial y} + 3\frac{\partial^2 z}{\partial y^2} = 0$ to canonical form. (07)
 - (b) Solve the Initial Boundary value problem for finite vibrating string: $u_{tt} = c^2 u_{xx}, 0 < x < l, t > 0$ with initial condition: $u(x, 0) = f(x), 0 \le x \le l, u_t(x, 0) = g(x), 0 \le x \le l$ and boundary conditions: u(0, t) = 0 = u(l, t).

OR

- (a) Solve: $(D^2 + DD' 6D'^2)z = \sin(2x + y)$ (07)
- (b) Solve Heat flow problem for semi-infinite rod: $u_t(x,t) = c^2 u_{xx}(x,t), 0 \le x < \infty, t > 0$ Boundary Condition: $u(0,t) = b_0, t > 0$, Initial Condition: $u(x,0) = 0, 0 \le x < \infty$ with $u(x,t), u_x(x,t) \to 0$ as $x \to \infty$.

Q.4 (a) Find the steady state temperature distribution in a semi-circular plate of radius 'a', (07) insulated on both the faces with a curved boundary kept at a constant temperature U_0 and its boundary diameter kept at zero temperature.

Governing heat flow equation is $u_t = \nabla^2 u$ In steady state, temperature is independent of time, $u_t = 0$ To solve:

P.D.E.:
$$\nabla^2 u(r,\theta) = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

B.C.s: $u(a,\theta) = U_0$, $u(r,\theta) = 0$, $u(r,\pi) = 0$

- (b) (i) Prove that if the Dirichlet problem for a bounded region has a solution, then it is unique. (07)
 - (ii) Consider the parallel plate capacitor, where V = 0 at z = 0 and V = 100v at z = d. Assuming the region between the plates charge-free. Calculate potential between the plates.

OR

(a) If u be a harmonic function in the interior of a rectangle $0 \le x \le a$, $0 \le y \le b$ in the (07) XY-plane satisfying Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

with boundary conditions u(0, y) = u(a, y) = u(x, b) = 0, u(x, 0) = f(x)Obtain the solution to the above problem.

(b) Let $u(r, \theta)$ be the bounded solution of the following boundary value problem in polar coordinates:

$$\nabla^{2} u(r,\theta) = u_{rr} + \frac{1}{r} u_{r} + \frac{1}{r^{2}} u_{\theta\theta} = 0, \ 0 < r < 2$$

$$u(2,\theta) = \cos^{2} \theta, \ 0 \le \theta \le 2\pi$$

Then, find the value of $u\left(1,\frac{\pi}{2}\right) + u\left(1,\frac{\pi}{4}\right)$.

Q.5 Attempt any SEVEN out of TWELVE:

(14)

- (1) Give any (two) harmonic function which satisfies the Laplace Equation.
- (2) State (only) ordinary point of the differential equation with suitable example.
- (3) Show that $f(x, y) = x^2 + y^2$ on R: $|x| \le 1$, $|y| \le 1$ satisfy Lipschitz condition.
- (4) Eliminate the arbitrary function from the following equation and hence, obtain the corresponding partial differential equation $x + y + z = f(x^2 + y^2 + z^2)$.

N1427.3

- (5) Find the complete integral of the following linear PDE: x(1+y)p = y(1+x)q.
- (6) Show that the PDEs xp yq = x and $x^2p + q = xz$ are compatible or not.
- (7) Determine that the p.d.e yr + (x + y)s + xt = 0 is hyperbolic, parabolic or elliptic.
- (8) Write the complementary function for the non-homogeneous p.d.e. DD'(D-2D'-3)z=0.
- (9) Find the characteristic curves for one dimensional Wave equation.
- (10) The force of attraction F both inside and outside the attracting matter, can be expressed in terms of a Gravitational Potential 'u' by the equation $F = \nabla u$. In empty space, 'u' satisfies ______ equation.
- (11) Give any (two) harmonic function which satisfies the Laplace Equation.
- (12) State (only) Neumann's problem for the rectangle.

****	****	
	 _	

