0101N1411

Candidate's Seat No:_____

M.Sc. Sem.-1 Examination

403

Mathematics

January-2024

Time: 2-30 Hours

[Max. Marks: 70

Instructions:

- 1. Use standard notations.
- 2. All questions are compulsory.
- 3. Mention question number clearly.

Q.1

- (a) (i) Find modulus, conjugate, argument and principal argument for the complex 14 number $Z = \frac{i}{2 \sqrt{3}i}$.
 - (ii) Check whether the function $f(z) = \frac{az+b}{cz+d}$ maps upper half plane into lower half plane or not in the following two cases. i) ad-bc > 0 ii) ad-bc < 0

OR

- (b) (i) Find complex number Z if $\arg(Z+1) = \frac{\pi}{6} \& \arg(Z-1) = \frac{2\pi}{3}$.
 - (ii) If 'n' is any rational number then prove that $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$

Q.2

- (a) (i) Determine the region of analyticity of following functions.

 (1) $f(z) = \frac{(z-i)^2}{(z^2-z-1)(z+3i)}$ (2) $f(z) = \frac{(z+1)}{e^z-1}$.
 - (ii) Let f(z) is analytic in some domain D which contains a line segment of the X-axis then $\overline{f(z)} = f(\overline{z})$ for each point z in the domain if and only if f(x) is real for each point x on the segment.

OR

(b) (i) Derive the Cauchy-Riemann conditions in polar coordinates.

14

Let $f(z) = \begin{cases} \frac{\overline{z}^2}{z} & ; z \neq 0 \\ 0 & ; z = 0 \end{cases}$ prove that f(z) satisfy Cauchy-Riemann equations (ii)

at z = 0 but not differentiable at z = 0.

Q.3

(a) (i) Find all the values of z such that $e^z = 1 + i$.

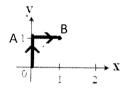
(ii) Find the value of the integral $I = \int_{0}^{2+2i} z^{2} dz$ where contour C is along the parabolic path $v = 2x^2$.

OR

(b) (i) (a) Find all the zeros of the given function $f(z) = \cos(2iz + 13)$ 14

(b) Find the principal value of the function $(1-i)^{4i}$

Find $\int (y-x-i3x^2) dz$ over the contour C, where C is OAB in (ii)



Q.4

(a) (i) State and prove Cauchy Integral Formula.

(ii) Using Cauchy's integral formula, evaluate $\oint \frac{5z+1}{(z-1)(z-2)} dz$

OR

State and prove Liouville's Theorem. (b) (i)

(ii) Evaluate $\int_{C:|z|=1}^{\infty} \frac{\sin^6 z}{\left(z - \frac{\pi}{6}\right)^3} dz.$

Q.5 Attempt any **SEVEN**

14 1. Which of the following is a 4th root of 'i'?

- b) $e^{i\frac{\pi}{8}}$ c) $\sqrt{3}e^{i\frac{\pi}{8}}$ d) $\sqrt{3}e^{i(\frac{\pi}{8}+2k\pi)}$
- 2. Some zeros of sin(*iz*) lies on a) real axis b) imaginary axis c) both of above are correct d) none of the
- If the complex numbers $\sin x + i \cos 2x$ & $\cos x i \sin 2x$ are conjugate to each 3. other then what is the value of x? b) 0
 - a) $2k\pi, k \in \mathbb{Z}$

14

14

14

- c) $(2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$ d) there does not exist any such 'x'
- 4. Let $f(z) = \overline{z}$. Then,
 - (a) f(z) is analytic in the whole complex plane.
 - (b) f(z) is analytic only at finitely many points in the complex plane.
 - (c) f(z) is analytic nowhere in the complex plane.
 - (d) f(z) is analytic only at the origin.
- 5. Let f(z) = u(x, y) + iv(x, y) be analytic then, $f'(z) = \underline{\hspace{1cm}}$.
 - (a) $u_x + iv_y$ (b) $u_y + iv_y$ (c) $v_x + iv_y$ (d) $v_y iu_y$
- 6. Let u(x, y) and v(x, y) be such that u and vare harmonic conjugate of each other. Then,
 - (a) u and v both are constant.
 - (b) u is constant and v is zero.
 - (c) u is zero and v is constant.
 - (d) u and v both are zero.
- 7. The principal value of t^{2i} is ____.
 - (a) $\exp(-\pi/2)$
 - (b) $\exp(\pi/2)$
 - (c) $\exp(-\pi)$
 - (d) $\exp(\pi)$
- 8. $\tanh^{-1}\left(\frac{1}{2}\right) = \underline{\hspace{1cm}}$.
 - (a) $\log \sqrt{3/2}$
 - (b) $\log \sqrt{3}$
 - $(c) \frac{1}{2} \log \frac{3}{2}$
 - (d) $\frac{1}{2}\log\sqrt{3}$
- 9. $\cos^{-1} z =$ _____.
 - (a) $-i \log \left[z + i\left(1 z^2\right)^{1/2}\right]$
 - (b) $-i \log \left[z i \left(1 z^2 \right)^{1/2} \right]$
 - (c) $-i \log \left[z + i \left(1 z^{1/2} \right)^2 \right]$
 - (d) $i \log \left[z + i \left(1 z^2 \right)^{1/2} \right]$

- 10. Find out the value of integration $I = \int_{C:|z|=10} (z^{10} + z^8 + z^2 + z + 1) dz$.
 - (a) 0
 - (b) 1
 - (c) 5
 - (d) $10^{10} + 10^8 + 10^2 + 10 + 1$
- Consider four counters in positive direction as $C_1:|z|=1$, $C_2:|z|=5$, 11. $C_3: |z-3|=1$ and $C_4: |z-3i|=0.1$. Then which of the following is true for these contours?
 - (a) $C_1 = C_2 + C_3 + C_4$
 - (b) $C_2 = C_3 + C_4 + C_1$
 - (c) $C_3 = C_4 + C_1 + C_2$
 - (d) $C_4 = C_1 + C_2 + C_3$
- 12. Find out the value of $\int_{|z|=2}^{\infty} \frac{\exp(-5z)}{(z-1)^{10}} dz.$
 - (a) $(-5)^9$

 - (b) $(-5)^{10}$ (c) $(-5)^9 e^{-5}$ (d) $(-5)^{10} e^{-5}$

