B.Sc Semester-6 Examination

CC 310
Statistics

Time: 2-30 Hours]

April-2024

[Max. Marks: 70

(14)

(14)

- 1. (i) Define general linear programming problem. In context with a linear programming problem define: (i) basic solution, (ii) feasible solution, (iii) basic feasible solution and (iv) optimal solution.
 - (ii) Solve the following linear programming problem:

$$Max \ z = 2x_1 + 4x_2$$

s.t. $2x_1 + 3x_2 \le 48$
 $x_1 + 3x_2 \le 42$
 $x_1 + x_2 \le 21$
and $x_1, x_2 \ge 0$

OR

- (i) A company sells two different products A and B. The company makes a profit of Rs. 40 and Rs. 30 per unit on product A and B respectively. The two products are produced in a common production process and are sold in two different markets. The production process has a capacity of 30,000 man hours. It takes 3 hours to produce one unit of A and one hour to produce one unit of B. The market has been surveyed and company officials feel that the maximum number of units of A that can be sold is 8,000 and that of B is 12,000 units. Subject to these limitations, the product can be sold in any convex combination. Formulate as LPP.
- (ii) Solve following LPP by graphical method:

$$Max \ z = 3x_1 + 9x_2$$

s.t. $x_1 + 3x_2 \le 60$
 $x_1 + x_2 \ge 10$
 $x_1 \le x_2$
and $x_1, x_2 > 0$

- 2. (i) Explain transportation problem as a particular case of linear programming problem. Explain the least-cost entry method.
 - (ii) A team of 5 horses and 5 riders has entered a jumping show contest. The number of penalty points to be expected when each rider rides any horse is shown below:

Horses / Machines	R_1	R_2	R_3	R_4	R_5
H_1	5	3	4	7	1
H_2	2	3	7	6	5
H_3	4	1	5	2	4
H_4	6	8	1	2	3
H_5	4	2	5	7	1

Page 1 of 3

Please go on to the next page...

B.Sc. Semester VI (Statistics STA-310) Semester Examination

How should the horses be allotted to the riders so as to minimize the expected loss of the team?

OR

- (i) Define Assignment Problem. Give the mathematical formulation of Assignment problem.
- (ii) Obtain initial basic feasible solution by Vogel's Approximation Method.

Store	1	2	3	4	Capacity
A	6	3	5	4	22
В	5	9	2	7	15
C	5	7	8	6	8
Demand	7	12	17	9	45

- 3. (i) Explain Forward pass and Backward pass Method.
 - (ii) Determine the critical path, critical activities and the project completion time.

Activity	Predecessor Activities	Duration
A		3
В	A	5
С	A	7
D	В	10
E	C	5
F	D,E	4

OR

- (i) Explain the PERT algorithm in detail.
- (ii) Explain the difference between CPM and PERT.
- 4. (i) Define (a) Competitive game, (b) Strategy, (c) Zero-sum game, (d) Two-person (14) Zero-sum game, (e) Payoff matrix.
 - (ii) Following is the payoff matrix for Player A. Solve the following game:

Player A / Player B	B_1	B_2	B_3
A_1	2	0	3
A_2	3	-1	1
A_3	5	2	-1

OR

Page 2 of 3 Please go on to the next page...

(14)

B.Sc. Semester VI (Statistics STA-310) Semester Examination

- (i) Explain the method for solving a 2×2 two-person zero-sum game without saddle point by algebraic method.
- (ii) Two players A and B match coins. If the coins match then A wins Rs. 2, if the coins do not match then B wins Rs. 2. Determine optimum strategies for the players and the value of the game.

5. Attempt any seven out of twelve.

trans-

(14)

- (i) State various methods of obtaining the initial basic feasible solution to a transportation problem.
- (ii) What is the necessary and sufficient condition for the existence of feasible solution to a transportation problem?
- (iii) What is replacement ratio in LPP? What is the role of replacement ratio in Simplex?
- (iv) What is the role of $z_j c_j$ in Simplex method?
- (v) How can you solve the assignment problem of maximization type?
- (vi) What is the use of CPM?
- (vii) Define Slack and Surplus variables.
- (viii) What is degenerate and non-degenerate solution for LPP?
- (ix) State the necessary and sufficient condition for the existence of feasible solution to a transportation problem.
- (x) Explain unbounded solution in Simplex method.
- (xi) When we use dominance property in game theory?
- (xii) Explain, how you deal with assignment problem with restrictions.