0404N67

0 1:1	*
Candidate's Seat No:	
b Scat Ivo.	

M.Sc Semester-4 Examination

509

Time: 2-30 Hours]

Physics April-2024

[Max. Marks : 70

Q.1	(A)	Write a program and draw a flow chart to do following	
		1. Load the hexadecimal numbers A7 H and 9A H in registers D and E	[07]
		respectively Add these numbers If and 9A H in registers D and F	3
		respectively. Add these numbers. If sum > FFH, display 01H at output PORT 0, otherwise display the sum.	
	(B)	Assume that $(A) = 18H$ and $CY=0$. Illustrate the accumulator contents after the	[07]
		RRC and RAR instructions. Write program and draw flow chart.	[07]
		OR	
Q.1	(A)		[07]
		1. Load the number 1B H in register D	
		2. Load the number 5F H in register C	
		3. Increment (C) by one	
		4. Add (D) + (C) and display sum at the out put PORT1.	
		Show status of S, Z and CY flags	
	(B)		
	, ,	Assume that five data bytes are stored in memory location starting from 2020H. Write a program and drops a flow that the starting from	[07]
		2020H. Write a program and draw a flow chart to add all the bytes. Set up B as	
		carry register to save any carries generated, while adding data bytes. Store sum	
Q.2	(A)	at two consecutive memory locations 2050H and 2051H.	
	()	Design a counter (write a program) to count from FFH to 00H in a system with	[07]
		0.5 micro second clock period. Use register C to set up one millisecond delay	
		between each count and display number at out put PORT 1. (T-state of inner	
	(B)	loop 14 and outer loop = 35)	
	(D)	Write steps to perform addition of two packed BCD numbers: 77 and 48	[07]
		Write steps to perform subtraction of two packed BCD numbers: 66 and 38	
0.2	CAN	OR	
Q.2	(A)	Write a program to count from 0 to 9 with one second delay between each	[07]
		count. At the count of 9, the counter should be zero and repeat the sequence	

continuously. Use register pair HL to set up a delay and display each count at one of the output ports. (Clock frequency of system is 1 MHz, T-state of inner loop = 24 and outer loop = 45).

(B) Write a program and draw a flow chart to provide the given ON/OFF time to
three traffic lights (Green, Yellow, and Red) and two pedestrian signs (WALK and DON'T WALK). The signal lights and signs are turned on/off by the data bits of an output port as shown below:

Lights/ signs	Data bits	On time
1. Green	D0	15 seconds
2. Yellow	D2	5 seconds
3. Red	D4	20 seconds
4. WALK	D6	15 seconds
5. DONT WALK	D7	25 seconds

The traffic and pedestrian flow are in the same direction; the pedestrian should cross the road when the Green light is on.

- Q.3 (A) Draw the schematic diagram of a two cavity klystron amplifier and explain its [07] construction and operation.
 - (B) Describe the construction of a multicavity cylindrical magnetron tube. Obtain an expression for Hull cut-off voltage.

OR

- Q.3 (A) Differentiate between a klystron and a TWT. Draw a schematic diagram of the helix type travelling wave tube and explain its construction.
 - (B) Write short notes on:
 (i) Mode curves in reflex klystron

 [07]
 - (ii) Gunn diode

Q.4

- (A) Describe the construction and working of the Faraday rotation isolator.
- (B) What are E- and H- plane tees? Discuss their properties. [07]

OR

- Q.4 (A) What is circulator? Discuss how two magic tees can be used as a four port [07]
 - circulator.
 (B) Describe slotted line method of measuring unknown frequency of a microwave [07] generator.

[07]

- Q.5
- Answer in brief **Any Seven** questions from the following: (Each question is of [14] two mark).
- (i) Write difference between CMP R and CPI 8 bit instructions
- (ii) Explain instruction 'LDAX D'
- (iii) List two common sources of error in programs.
- (iv) What is a 'stack'?
- (v) CALL is ___ byte instruction.
- (vi) Explain instruction 'STC'
- (vii) What is the relationship between the speed of axial RF electric field propagating in a slow wave structure in a TWT and speed of light?
- (viii) What are cross field devices?
- (ix) What are bolometers?
- (x) How many elements are there in an S matrix of a magic tee?
- (xi) Define coupling factor of a directional coupler.
- (xii) Outline two important uses of microwave attenuators?

*** PAPER ENDS ***

