0204N17

Candidate's Seat No:

M.Sc Semester-4 Examination

507

Statistics

Time: 2-30 Hours

April-2024

[Max. Marks: 70

Instructions:

- 1. All the questions are compulsory.
- 2. Figures on the right indicate the marks.
- Define time series. Suppose that five successive terms of the time series are given. Find trend Q-1(a)[07] using weighted moving average for $\,u_t=\,a_0+a_1t+a_2t^2\,.\,$
- Make your comments in above (a) if cubic is fitted instead of quadratic. State your general Q-1(b)[07] conclusion on it.

- Discuss Variate Difference method and show how the variance of random component is Q-1(a)[07] estimated using this method.
- Q-1(b)Write a brief note on Periodogram analysis.

[07]

- Q-2(a) Explain the concept of 'Unit root Stochastic Process". Write different particular cases of the [07] time series $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + u_t$ where u_t a white noise error term and t is time.
- Discuss Variate Difference method to show how the trend component of a time series can be Q-2(b)[07] estimated.

OR

- Q-2(a) Define trend stationary and Difference stationary stochastic process. Why random walk is said to [07] have an infinite memory?
- explain the concept of RWM with drift and without drift. Q - 2(b)

[07]

How do you test the stationarity of the given time series using DF test. Q-3(a)Explain the following terms in usual notation with appropriate examples: Q - 3(b)

[07] [07]

(a) AR (p) (b) MA(q)(c) ARMA(p, q)(d)

ARIMA (p, d, q)

Q-3(a)Define stationary time series. Distinguish between the ordinary and stationary time series.

[07]

Q-3(b)Explain Box Jenkins methodology. Write its limitations and importance.

[07]

- In usual notations define auto covariance and auto correlation matrix. For n=3 Show that Q-4(a)[07] $\rho_i \le 1, for i = 1.2 .. and -1 \le \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} \le 1$
- Let $X_t = y cos\theta_t + z sin\theta_t$, where y and z are two uncorrelated random variables each with Q-4(b)[07] mean zero , variance unity and $\theta \in (-\pi, \pi)$. Obtain γ_k and ρ_k in usual notations.

- Explain the effect of elimination of trend on Oscillatory component and Random component of Q-4(a)[07]the given time series.
- Q-4(b)Explain the various component of time series.

[07]

Q-5Attempt any seven

[14]

(i) Which of the following is an example of time series problem? Estimating number of hotel rooms booking in next 6 months.

(1)

(x)

Which of the following statement is false?

	(2)							
	(3) (A)	1 and 2 (B) 2 and 3 (C)	1 and		(D)	1, 2 and 3		
(ii)	* (*)	ifference method fails when	1 and	3	(0)	1, 2 and 3		
	(A) Cyclical component is present in the given time series.							
	(B) Seasonal component is present in the given time series.							
	(C) Random component is present in the given time series.							
	(C) (D)	None of the above	are in the	Siveri tilli	c series			
(iii)	, ,		eries usin	σ DF test i	if the ni	ull hypothesis H	$\delta = 0$ is	
(111)	In testing the stationarity of the given time series using DF test if the null hypothesis H: $\delta=0$ is accepted then the time series is							
	(A)	Non – stationary	(B)	station	arv			
	(C)	Oscillatory	(D)	Harmo				
(iv)		following time series is stationa						
(-)	(A)	$y_t = y_{t-1} + u_t$		$y_t = \beta_t$	$_{1} + \nu_{t-}$	$_1+u_t$		
	(c)	$y_t = \beta_1 + \beta_2 t + u_t$		$\Delta y_t =$				
(v)		monthly death rates in India ar					April.	
(-)	2020). We can observe an exponential increase in death rate in last few months due to Covid-19							
	epidemic in the world. We can interpret increase in death rate in India as							
	(A)	Trend component	(B)					
	(c)	Cyclical component	(D)	Irregula				
(vi)		following statement is false?						
	(A) In AR (p) case the ACF declines geometrically							
	(B) In AR (p) case the PACF cuts off after a certain number of lags.							
	(C) In MA(q) case the ACF declines exponentially							
	(D)	In MA _(q) cases the PACF spike	es through	h certain l	ags.			
(vii)	Which of the	following statement is true?						
	(A) If by trial sometimes we get $\mu=\lambda$, the intensity function takes high values, otherwise the							
	value is very small.							
	(B) If by trial sometimes we get $\mu < \lambda$, the intensity function takes high values, otherwise the							
	value is very small.							
	(C) If by trial sometimes we get $\mu > \lambda$, the intensity function takes high values,							
	value is very small.							
	(D) If by trial sometimes we get $\mu \neq \lambda$, the intensity function takes high values, otherwise the							
(-111)	value is very small. Box Jenkins is an iterative procedure which contains the following four steps.							
(viii)	Box Jenkins is	an iterative procedure which c	ontains tr	ne tollowii	ng tour	steps.		
	(i)	Forecasting	/::\	Diagno	ctic cho	ocking		
	(i) (iii)	Identification of the model	(ii) (iv)			imation of the		
	(1117)	identification of the model	(10)					
	chosen model Chose the right order of the above four steps.							
	(A)	[(i), (ii), (iii), (iv)]	(B)	[(ii), (ii	i) (i) (i	iv) 1		
	(C)	[(ii), (iii), (iv), (i)]	(D)	[(iii), (i				
(ix)		following statement is true?	(5)	L (// (, , (,,	.,,		
()	(A) In the method of '2m' yearly moving average, two terms at beginning and two terms at the							
	end of the series would not be determined.							
	(B) In the method of '2m' yearly moving average, two terms at beginning and two terms at the							
	end of the series would not be determined.							
	(C) In the method of '2m+1' yearly moving average, 'm' terms at beginning and 'm+1' terms at							
	the end of the series would not be determined.							
	(D) In the method of '2m+1' yearly moving average, m+1 terms at beginning and 'm+1' term							
		d of the series would not be de						

(A) The method of moving average has no effect on the Oscillatory component.

N17- 3

- (B) The series obtained after elimination of trend will not be free of Oscillations.
- (C) In the method of moving average most of the primary oscillation in the original time series will be eliminated as trend
- (D) Using Correlogram analysis we can know the cause of Oscillation in the given time series.
- (xi) Which of the following statement is true?
 - (A) If a time series is stationary, then it is said to be integrated of order zero.
 - (B) If a time series is non stationary, then it is said to be integrated of order zero.
 - (C) If a time series is stationary, then it is said to be integrated of order'd'.
 - (D) If a time series is stationary, then it is said to unit root stochastic process.
- (xii) Write any two uses of time series.
