0201N1441

M.Sc. Sem.-1 Examination

404

Statistics

January-2024	
Time: 2-30 Hours]	[Max. Marks: 70
Note: Attempt all questions.	
Q. 1(i) Explain Stein's method for the determination of sample size.(ii)Explain the method of determination of sample size when E(L) is specified.	[7] [7]
OR (i) Explain the cumulative total method of drawing a varying probability sample. (ii) Explain fixed relative standard error method for the determination of sample size	[7] ze. [7]
Q. 2	
(i) Suggest an unbiased estimator of population total under ppswr. Obtain its vunbiased estimator of this variance.	variance and [7]
(ii) Explain Sen-Midzuno method.	[7]
OR	
(i) Explain gain due to ppswr sampling as compared to srs.(ii) Discuss Des Raj's estimator.	[7] [7]
Q. 3(i) Suggest an unbiased estimator of population mean when a sample of n clusters o is selected with srswr. Derive its variance and also obtain unbiased estimator of this	of equal size variance. [7]
(ii) In usual notations show that $V\left(\hat{\overline{Y}}_{uni-stagesss}\right) \leq V\left(\hat{\overline{Y}}_{two-stagesampling}\right) \leq V\left(\hat{\overline{Y}}_{clustersampling}\right).$	[7]
OR	
(i) Define cluster sampling. Discuss its advantages and disadvantages.	[7]
(ii) Suppose <i>n</i> fsu's are selected with PPSWR and from each selected fsu, <i>m</i> ssu's with SRSWOR. Give an unbiased estimator of the population total <i>Y</i> and derive variance. Also, obtain an unbiased estimator of this variance.	are selected its sampling [7]
Q. 4	
(i) Define ratio estimator. Obtain the expressions for its bias and variance in case of(ii) Discuss separate and combined regression estimators.	ppswr. [7] [7]

OR

(i) Discuss unbiased ratio type estimators.

[7]

(ii) Define separate and combined ratio estimators. Explain, in what situation you will prefer combined ratio estimator instead of the separate ratio estimator. [7]

Q. 5 Answer any seven:

[14]

- (i) Define PPS sampling.
- (ii) What do you mean by permissible error?
- (iii) The ratio of the standard error of the estimator to the expected value of the estimator is known as
- (A) variance
- (B) relative standard error
- (C) error
- (D) none of the above
- (iv) Which of the following is used to select a sample in pps sampling?
- (A) Cumulative total method

(B) Lahiri's method

(C) Sen-Midzuno method

- (D) all of the above
- (v) In usual notations $\sum_{i=1}^{N} \pi_{ij}$ is equal to
- (A) $(n-1)\pi_i$ (B) $(n+1)\pi_i$ (C) $(n+2)\pi_i$
- (D) none of the above
- (vi) In usual notations $\sum_{j(\pm i)=1}^{N} (\pi_{ij} \pi_{i}\pi_{j})$ is equal to

- (A) $-\pi_i(1-\pi_i)$ (B) $\pi_i(1-\pi_i)$ (C) $-\pi_i(2-\pi_i)$ (D) none of the above
- (vii) Define two stage sampling.
- (viii) In usual notations, in cluster sampling, sampling efficiency is given by

(A)
$$E_s = \frac{1}{1 + (M - 1)\rho_c}$$

(B)
$$E_s = \frac{1}{1 + (M-2)\rho_c}$$

(C)
$$E_s = \frac{1}{2 + (M-1)\rho_c}$$

(D)
$$E_s = \frac{M}{1 + (M - 1)\rho_c}$$

- (ix) In usual notations ρ_c lies in the range
- (A) $\{-1/(M-1)\}$ to 2

(B) $\{-2/(M-1)\}$ to 1

(C) $\{-3/(M-1)\}$ to 1

(D) $\{-1/(M-1)\}$ to 1

- (x) Define regression estimator.
- (xi) Give one application of ratio estimation.
- (xii) In case data on an auxiliary variate for individual sampling units are not available, instead , aggregate value for all units of auxiliary variate is available, then one can rely on:
- (A) pps sampling scheme

(B) stratified sampling scheme

(C) ratio method of estimation

(D) none of the above
