Seat No. :	

AL-101

April-2023

B.Sc., Sem.-IV

204: Statistics

Distribution Theory – II

Time: 2:30 Hours] [Max. Marks: 70

Instruction: Each sub-question carries 7 marks and question 5 carries 1 mark each.

1. Write the following:

14

- (i) Define negative binomial distribution. Derive the CGF of negative binomial distribution. Hence determine find first four cumulants.
- (ii) State and prove the memoryless property for geometric distribution.

OR

- (i) Define Geometric distribution. Obtain MGF of geometric distribution. Hence determine mean and variance.
- (ii) Prove that Poisson distribution is a limiting case of Negative Binomial distribution.
- 2. Write the following:

14

- (i) Define Cauchy distribution. Derive the distribution function and hence determine the median of Cauchy distribution.
- (ii) Define Log-normal distribution. Determine quartiles of log-normal distribution.

OR

- (i) Define Laplace distribution. Derive the moment generating function of Laplace distribution.
- (ii) Define two parameter Weibull distribution. Derive the distribution function and hence determine median of Weibull distribution.

3. Write the following:

Hence

14

- (i) Define a normal distribution. Derive the mgf of normal distribution. Hence determine its mean and variance.
- (ii) Let $(X, Y) \sim BVND$ $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Show that X and Y are independent if and only if $\rho = 0$.

OR

- (i) Let $(X, Y) \sim BVND \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho\right)$. Obtain the conditional distribution of X given Y = y.
- (ii) Let $X \sim N$ (μ , σ^2). Show that all the odd order moments of X are zero. Also find the expression for even order central moments.

4. Write the following:

14

- (i) State and prove the Lindberg-Levy form of central limit theorem.
- (ii) With the usual notation prove that

$$\mu_r' = (-i)^r \left[\frac{d^r \phi x(t)}{dt^r} \right]_{(t=0)}$$

OR

- (i) State and prove Bernoulli's Law of Large numbers.
- (ii) Define Characteristics function. Derive the characteristics function of geometric distribution.

5. Attempt any **seven** out of **twelve**.

14

- (i) Give the probability mass function of Hypergeometric distribution.
- (ii) Write two different forms of negative binomial distribution.
- (iii) Let the random variable X denote the number of attempts to get first success in independent Bernoulli's trials. What is the probability mass function of X?
- (iv) Two independent random variables X_1 and X_2 have same geometric distribution, what is the distribution of X_1 given $X_1 + X_2$?

2

AL-101

- (v) State the pdf of standard Log-normal distribution.
- (vi) Let X and Y be independent Log-normal. What is the distribution of XY?
- (vii) State the mean and variance of Laplace distribution.
- (viii) Let $(X, Y) \sim BVND(0, 0, 1, 1, \rho)$. Write the conditional pdf of X given Y = y.
- (ix) State the formula for mean deviation about mean of normal distribution.
- (x) Define standard normal distribution.
- (xi) Define Convergence in Probability.
- (xii) State the characteristics function of Binomial distribution.

AL-101 3

AL-101 4