AK-116

April-2023

Integrated M.Sc. (CA & IT), Sem.-IV

Computer Oriented Numerical Methods

Time : 2:30 Hours] [Max. Marks : 70

Instruction: Use of non-programmable scientific calculator is allowed.

1. (a) Attempt any **one**:

10

(1) Use Gauss Seidel method to solve the following system of linear equations :

$$10x + y + 2z = 44$$

$$2x + 10y + z = 51$$

$$x + 2y + 10z = 61$$

(2) Use Gauss Jacobi method to solve the following system of linear equations :

$$5x + 2y + z = 12$$

$$x + 2y + 5z = 20$$

$$x + 4y + 2z = 15$$

Find the approximate value of the root after fifth iteration.

(b) Attempt all:

4

- (1) Convert into binary: $(107)_{10}$.
- (2) Find 2's complement of $(39)_{10}$.
- (3) Define absolute error.
- (4) Define types of errors.
- 2. (a) Attempt any **one**:

10

(1) Fit a curve of the form $y = ax^b$ to the following data by the Method of least square

square							
x	1	2	3	4	5	6	7
y	87	97	113	129	202	195	193

- (2) Obtain normal equations for quadratic curve fitting using least square method.
- (b) Attempt any one:

4

(1) Fit a straight line to the following data:

x	1	3	5	7	9	
y	2	4	15	7	8	

(2) Fit a quadratic curve to the following data:

x	1	3	5	7
y	4.7	5.8	3.3	7.2

3. (a) Attempt any **one**:

10

- (1) Find $\sqrt[6]{39}$ using regula falsi method, correct upto four decimal places.
- (2) Derive the formula for Newton Raphson method. Also, find one of the root of the non-linear equation $xe^x = 1$, correct up to four decimal places using Newton Raphson method.
- (b) Attempt any one:

4

- (1) Using bisection method, find the root of an equation $\sqrt{x} \cos x = 0$ after fourth iteration.
- (2) Find an approximate value $\sqrt{3}$ using Newton Raphson method after fourth iteration.
- 4. (a) Attempt any **one**:

10

(1) From the following data interpolate the value of x = 0.

x	-2	-1	2	3
y	-3	2	5	10

(2) Using Newton's backward method to find the number of persons who probably will be travelling if rate is 4.2

Rate	5	4.5	4	3.5	3
Passengers	30000	40000	60000	100000	150000

(b) Attempt all:

4

Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$

5. (a) Attempt any **one**:

10

- (1) Use Modified Euler method to solve the ODE y' = 1 y with the initial condition y(0) = 0 at x = 0.1, 0.2 up to three decimal places.
- (2) Use Runge-Kutta fourth order method to solve the ODE

$$\frac{dy}{dx} = x + y$$
, y (0) = 1 at $x = 0$ to 0.2 by taking h = 0.1.

(b) Attempt any **one**:

4

- (1) Evaluate $\int_0^{\pi} \frac{\sin^2 x}{5 + 4\cos x} dx$ by taking n = 6 by applying Simpson's 3/8 Rule.
- (2) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1 \frac{1}{2} \sin^2 t}$ using Trapezoidal rule with n = 6.

AK-116