Seat No. :

AP-103

April-2023

M.Sc., Sem.-IV

510: Physics

Remote Sensing and Electronic Communication-II (Old and New Course)

Time: 2:30 Hours] [Max. Marks: 70 **Instructions:** (i) Symbols have their usual meanings. Scientific calculators are allowed. (ii) 1. (A) With help of a figure and necessary equations describe Planck's law, Wien's 7 displacement law and Stefan Boltzmann law. Discuss how pushbroom scanning is different from whiskbroom scanning. Which (B) scanning method is better and why? 7 OR (A) What do you understand by spectral signature? Plot spectral signatures of soil and vegetation and discuss how these features can be identified in an image. 7 7 Distinguish between: (B) (i) spectral resolution and radiometric resolution

simple vegetation index and normalized difference vegetation index

(ii)

2.	(A)	for image enhancement? What are the different techniques used for image enhancement? Discuss in detail about histogram equalization.	7
	(B)	Why geometric correction is needed on a satellite image? How is it achieved?	7
		OR	
	(A)	What do you understand by image restoration? Discuss about radiometric and atmospheric corrections.	7
	(B)	What is meant by spatial frequency of an image? Discuss the processes of convolution in the context of high pass filters.	7
3.	(A)	For FM receiver, derive the expression for signal to noise ratio at the reference and at the output.	7
	(B)	Define AGC. Why is it needed in receiver? Draw the circuit of practical diode detector and discuss its working.	7
		OR	
	(A)	Discuss superheterodyne FM receiver with neat and clean block diagram. Compare the differences and similarities between AM and FM superheterodyne receiver.	7
	(B)	State the advantage of having RF stage in superheterodyne AM receiver. Draw the circuit diagram of a typical RF stage. What is image frequency?	7
4.	(A)	Discuss in detail, "Moving Target Indicator (MTI) radar".	7
	(B)	Explain in detail, "FMCW radar".	7
		OR	
	(A)	Explain in detail, "pulsed radar system".	7
	(B)	With necessary block diagram explain conical switching for radar tracking.	7
AP-	103	2	

5. Briefly answer any **Seven** questions from the following: (2 marks each)

14

- (i) What is meant by atmospheric window? What is its significance in remote sensing?
- (ii) Define emissivity. What will be emissivity of a black body and a perfect reflector?
- (iii) What is Modulation Transfer Function (MTF)? If its value is one, what does it mean?
- (iv) What is the significance of PAN band used in satellite sensor?
- (v) Spatial resolution of sensor used in Cartosat is 0.65 m, what does it mean?
- (vi) What are the two advantages of Principal Component Analysis (PCA)?
- (vii) Why is intermediate frequency not selected very low?
- (viii) Local oscillator frequency is considered higher than the signal frequency. (TRUE or FALSE)
- (ix) What do you mean by selectivity of a receiver?
- (x) Military radar operates at 7 GHz with 4.9 MW power output. If the antenna diameter is 15 m, the receiver bandwidth is 2.6 MHz and has a 17 dB noise figure, determine the maximum radar range for 0.8 m² target.
- (xi) What is blind speed?
- (xii) How does the main/interrogating radar system identify that the detected signal (radar beacon) is from friend or foe ?

AP-103 3

AP-103 4