2/	CAMPS.	6
ment i	A	-

1304E27

|--|

B.Sc. Semester-6 Examination

SE 311

Mathematics (E)

Time: 2-30 Hours April-2023

[Max. Marks: 70

Instructions: (i) All the questions are compulsory and carry equal marks.

- (ii) Notations are usual everywhere.
- (iii) The right hand side figures indicate marks of the question/sub-question.
- Q-1 (a) Discuss SI model.

[9]

- (b) If contact rate $\alpha = 0.001$, $I_0 = 1$ and $S_0 = 2000$, then determine:
- (i) The number of susceptible left after 3 weeks.
- (ii) The density of susceptible when the rate of appearance of the new cases is maximum. [9]
- Q-1 (a) Derive expression for number of infected persons considering General Deterministic model with removal (SIR model). [9]
- (b) If $\rho = 50$ and $S_0 = 500$, find the number of susceptible left by the time 100 infected individuals are removed from circulation. Also find the number of infective if $I_0 = 2$. [9] Q.2 (a) Discuss Lotka's model. [9]
 - (b) Find dominant Eigen value for the following problem:

$$f_a = \begin{cases} 0, a = 1 \\ 0, a = 2 \\ 6, a = 3 \end{cases} \quad \text{and} \quad p_a = \begin{cases} 1, & a = 1 \\ 1/2, & a = 2 \\ 1/6, & a = 3 \end{cases}$$
OR

- Q. 2 (a) Formulate model given by Bernardelli, Lewis and Leslie and discuss its solution. [9]
- (b) Assume that there is population that consists of 45 individuals in age class 1, 18 individuals in age class 2, 11 individuals in age class 3 and 4 individuals in age class 4. Compute the time - specific growth rate if Leslie matrix for this population is given by

$$\begin{bmatrix} 0 & 1 & 1.5 & 1.2 \\ 0.8 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.25 & 0 \end{bmatrix}.$$
 [9]

Q.3(a) Derive expression for the size of the population considering Logistic Growth model.[9]

(b) If birth rate = $\left(\frac{1}{2} - \frac{1}{800}x\right)x$ and the death rate = $\left(\frac{1}{4} + \frac{1}{200}x\right)x$.

Further suppose that there is no immigration and no emigration.

Find expression for the population size x(t) at any time t.

[9]

OF

Q. 3 (a) Discuss exponential growth model considering effects of Immigration and Emigration on population.

[9]

(b) A population x(t) is growing according to logistic equation, and $x(t_1) = n_1$, $x(t_1 + T) = n_2$ and $x(t_1 + 2T) = n_3$ then

show that the carrying capacity is given by $K = \frac{\frac{1}{n_1} + \frac{1}{n_3} - \frac{2}{n_2}}{\frac{1}{n_1 n_3} - \frac{1}{n_2^2}}.$ [9]

Q.4 Attempt any Eight of the following questions in short:

[16]

- (a) Define Carriers.
- (b) In Discrete Time Discrete Age Scale population models: for which values of largest absolute Eigen value, population of all age groups will grow?
- (c) List limitations of exponential growth model propounded by Malthus.
- (d) Write only basics equations of the SIS model when carriers is a function of time t.
- (e) Draw graph of $\psi(r)$ (Lotka's model for population growth).
- (f) Draw Logistic growth curve.
- (g) Give any two names of Mathematical Models in epidemiology.
- (h) SIS model with coefficient works as a function of which parameter?
- (i) Give any two names of Single-species population models Age structured.
- (j) What specifies Bernardelli, Lewis and Leslie (BLL) model?
- (k) Give any two names of Single-species population models non-age structured.
- (1) Describe any two effects of immigration and Emigration on population.

