Seat No.:	
-----------	--

AD-131

April-2023 B.Sc., Sem.- VI

CC-309: Mathematics

Tim	ie : 2:3	30 Hours] [Max. Marks : 7	70
Inst	ructio	on: All questions are compulsory.	
1.		Let X be a metric space. Prove that an open sphere is an open set.	7
	(B)	Let X be a metric space. A subset F of X is closed if and only if its complement F' is open.	7
		OR	
	(A)	Let (X, d) be a complete metric space and Y be a subspace of X. Then prove that Y is complete if and only if it is closed in (X, d).	7
	(B)	In a metric space X prove that every closed sphere is a closed set.	7
2.	(A)	Prove that compact subsets of metric spaces are closed.	7
	(B)	Let X and Y be metric spaces and f a mapping of X into Y then prove that f is	
		continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.	7
	()	OR	
	(A)	A subset E of the real line R1 is connected if and only if it has the following property: if $x \in E$, $y \in E$ and $x < z < y$ then $z \in E$.	7
(1	(B)	Let (X, d_1) and (Y, d_2) be metric spaces then prove that $f: X \to Y$ is continuous	
		on X iff $f^{-1}(F)$ is closed in X , whenever F is closed in Y .	7
· ·	(A)	State and prove Weierstrass M_n -test. Show that the sequence $\{f_n(x)\}$ is not	
		uniformly convergent on any interval containing zero where $f_n(x) = \frac{nx}{1 + n^2x^2}$.	7
	(B)	Let (f_n) be a sequence of functions in R [a, b] converging uniformly to f. Then	
		$f \in R[a, b]$ and $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$.	7
		OR	
	(A)	Let (f_n) be a sequence of continuous function on $E \subset C$ converges uniformly to f	
		on E then prove that f is continuous on E.	7
	(B)	Let f_n satisfy (1) $f_n \in D[a, b]$ (2) $(f_n(x_0))$ converges for $x_0 \in D[a, b]$ (3) f_n	
		converges uniformly on $[a, b]$ then prove that f_n converges uniformly on $[a, b]$ to a	
		function f.	7
AD.	.131	1 P T (`

4. (A) State and prove Abel's limit theorem.

(B) For every $x \in \mathbb{R}$, and n > 0, prove that

$$\sum_{k=0}^{n} (nx-k)^2 \binom{n}{k} x^k (1-x)^{n-k} = nx(1-x) \le \frac{n}{4}.$$

OR

(A) State and prove Weierstrass Approximation theorem.

eorem. 7

(B) State Taylor's series.

Show that for
$$-1 \le x \le 1$$
, $\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$
Hence evaluate $\log 2$.

5. Answer in short : (Any **SEVEN**)

14

7

7

- (1) Let X be an arbitrary non-empty set and d is defined by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ then prove that X is a metric space.
- (2) Define metric space.
- (3) Define Derive set. Give one example of derive set.
- (4) Define compace set.
- (5) Define finite subcover.
- (6) Prove that open interval (0, 1) with usual metric is not compact.
- (7) Is $f_n(x) = \frac{1}{1 + nx} (x \ge 0)$ continuous? Justify.
- (8) If the series $\sum a_k$ converges absolutely then prove that the series $\sum a_k \cos kx$ is uniformly convergent on R.
- (9) Show that the series $\sum_{k=0}^{\infty} (xe^{-x})^k$ is uniformly convergent.
- (10) Prove by Taylor's series $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$
- (11) State Bernstein Theorem.
- (12) For every $x \in R$ and $n \ge 0$ prove that $\sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} = 1$.

AD-131