\qquad

MT-134

March-2019

T.Y. M.B.A. Integrated, Sem.-VI Operations Research

Time : 2:30 Hours]
[Max. Marks : 70

Note: Log and statistical tables will be provided on demand and use of nonprogrammable scientific calculator is permitted.

1. (a) Define linear programming problem. Mention its uses.
(b) Solve the following graphically: (any one)
(1) Minimize $\mathrm{Z}=x_{1}+x_{2}$ under the following constraints, where $x_{1}, x_{2} \geq 0$.

$$
5 x_{1}+10 x_{2} \leq 50
$$

$x_{1}+x_{2} \geq 1$
$x_{2} \leq 4$
(2) Two types of hens are kept in a poultry farm. Type A hen costs ₹ 20 each and Type B hen costs ₹ 30 each. Type A hen lays 4 eggs per week and Type B hen lays 6 eggs per week. At the most, 40 hens can be kept in the poultry farm. Not more than ₹ 1050 is to be spent on the hens. How many hens of each type should be purchased to get maximum eggs ?
2. Solve the following : (any two)
(1) Solve the following LPP by simplex method.

Maximize $\mathrm{Z}=2 x_{1}+4 x_{2}+x_{3}$ subject to the following constraints,
Where $x_{1}, x_{2}, x_{3} \geq 0$.

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 4 \\
& 2 x_{1}+x_{2} \leq 3 \\
& x_{2}+4 x_{3} \leq 3
\end{aligned}
$$

(2) Solve the following LPP by Big M method.

Minimize $Z=12 x+20 y$ subject to the following constraints,
where $x, \mathrm{y} \geq 0$.

$$
\begin{aligned}
& 6 x+8 y \geq 100 \\
& 7 x+12 y \geq 120
\end{aligned}
$$

(3) Solve the following LPP by simplex method. Also show that the problem has multiple solution.

Maximize $\mathrm{Z}=6 x_{1}+2 x_{2}+4 x_{3}$ subject to the following constraints,
Where $x_{1}, x_{2}, x_{3} \geq 0$.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3} \leq 28 \\
& 3 x_{1}+x_{2}+2 x_{3} \leq 24 \\
& x_{1}+2 x_{2}+3 x_{3} \leq 35
\end{aligned}
$$

3. (a) Define dual LPP. Explain dual primal relationship in general.
(b) Solve the following : (any one)
4. Obtain the dual of maximize $\mathrm{Z}=3 x_{1}+4 x_{2}$ subject to the following constraints, where $x_{1}, x_{2}, \geq 0$.
$2 x_{1}+3 x_{2} \leq 16$
$5 x_{1}+2 x_{2} \geq 20$
5. Solve the following LPP.

Maximize $\mathrm{Z}=4 x_{1}+6 x_{2}+2 x_{3}$ subject to the following constraints, where $x_{1}, x_{2}, x_{3} \geq 0$.
$x_{1}+x_{2}+x_{3} \leq 3$
$x_{1}+4 x_{2}+7 x_{3} \leq 9$
Find the optimal product mix and the corresponding profit of the company.
Also find the range of profit contribution of product coefficient c_{3} of variable x_{3} in the objective function such that current optimal product mix remains unchanged.
4. (a) Solve the following : (any one)

1. Obtain initial basic feasible by North West Corner Rule.

Origins	Destinations				
	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	Supply
A	7	5	2	6	13
B	9	10	3	8	17
C	5	4	7	3	5
Requirement	5	11	15	4	35

2. Obtain initial basic feasible by Matrix Minima Method.

Origins	Destinations			
	D	E	F	Supply
A	60	40	240	3
B	100	65	180	5
C	260	210	60	6
Demand	6	4	4	14

(b) Solve the following : (any one)

1. Obtain optimal solution using MODI method.

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	Supply
$\mathbf{S}_{\mathbf{1}}$	19	30	50	10	7
$\mathbf{S}_{\mathbf{2}}$	70	30	40	60	9
$\mathbf{S}_{\mathbf{3}}$	40	8	70	20	18
Demand	5	8	7	14	34

2. The number of units available at factories X and Y are 200 and 300 respectively. The units demanded at retail stores A, B and C are 100, 150 and 250 respectively. Investigate the possibility of trans-shipment. The transportation cost in rupees per unit is given in the following table. Find the optimal shipping schedule.

	Factory	Factory	Retail Store		
	\mathbf{X}	\mathbf{Y}	\mathbf{A}	\mathbf{B}	\mathbf{C}
Factory X	0	8	7	8	9
Y	6	0	5	4	3
Retail Store					
A	7	2	0	5	1
B	1	5	1	0	4
\mathbf{C}	8	9	7	8	0

5. (a) What is assignment problem ? State the similarities and differences between assignment problem and transportation problem.
(b) Solve the following: (any one)
6. Solve the following assignment problem and explain how the jobs be allocated, one per employee, so as to minimize the total man - hours?

		Employees				
		I	II	III	IV	V
	A	10	5	13	15	16
Jobs	B	3	9	18	13	6
	C	10	7	2	2	2
	D	7	11	9	7	12
	\mathbf{E}	7	9	10	4	12

2. What should be the sequence of visit of the salesman from city to city so that the cost is minimum for the given problem?

		To City					
		A	B	C	D	E	
	A	∞	2	5	7	1	
From City	B	6	∞	3	8	2	
	C	8	7	∞	4	7	
	D	12	4	6	∞	5	
	E	1	3	2	8	∞	

