Seat No. : _____

MT-134

March-2019

T.Y. M.B.A. Integrated, Sem.-VI

Operations Research

Time : 2:30 Hours]

[Max. Marks: 70

Note: Log and statistical tables will be provided on demand and use of nonprogrammable scientific calculator is permitted.

- 1. (a) Define linear programming problem. Mention its uses. 6
 - (b) Solve the following graphically : (any **one**)
 - (1) Minimize $Z = x_1 + x_2$ under the following constraints, where $x_1, x_2 \ge 0$.

 $5x_1 + 10x_2 \le 50$ $x_1 + x_2 \ge 1$ $x_2 \le 4$

- (2) Two types of hens are kept in a poultry farm. Type A hen costs ₹ 20 each and Type B hen costs ₹ 30 each. Type A hen lays 4 eggs per week and Type B hen lays 6 eggs per week. At the most, 40 hens can be kept in the poultry farm. Not more than ₹ 1050 is to be spent on the hens. How many hens of each type should be purchased to get maximum eggs ?
- 2. Solve the following : (any **two**)
 - (1) Solve the following LPP by simplex method.

Maximize $Z = 2x_1 + 4x_2 + x_3$ subject to the following constraints,

1

Where $x_1, x_2, x_3 \ge 0$.

$$x_1 + 2x_2 \le 4$$

$$2x_1 + x_2 \le 3$$

$$x_2 + 4x_3 \le 3$$

MT-134

14

8

(2) Solve the following LPP by Big M method.

Minimize Z = 12x + 20y subject to the following constraints,

where *x*, $y \ge 0$. $6x + 8y \ge 100$ $7x + 12y \ge 120$

(3) Solve the following LPP by simplex method. Also show that the problem has multiple solution.

Maximize $Z = 6x_1 + 2x_2 + 4x_3$ subject to the following constraints,

Where $x_1, x_2, x_3 \ge 0$.

 $2x_1 + 3x_2 + x_3 \le 28$ $3x_1 + x_2 + 2x_3 \le 24$ $x_1 + 2x_2 + 3x_3 \le 35$

- 3. (a) Define dual LPP. Explain dual primal relationship in general.
 - (b) Solve the following : (any **one**)
 - 1. Obtain the dual of maximize $Z = 3x_1 + 4x_2$ subject to the following constraints, where $x_1, x_2, \ge 0$.

6

8

 $2x_1 + 3x_2 \le 16$ $5x_1 + 2x_2 \ge 20$

2. Solve the following LPP.

Maximize $Z = 4x_1 + 6x_2 + 2x_3$ subject to the following constraints,

where $x_1, x_2, x_3 \ge 0$.

$$x_1 + x_2 + x_3 \le 3$$

$$x_1 + 4x_2 + 7x_3 \le 9$$

Find the optimal product mix and the corresponding profit of the company. Also find the range of profit contribution of product coefficient c_3 of variable x_3 in the objective function such that current optimal product mix remains unchanged. 4. (a) Solve the following : (any **one**)

Origins	Destinations					
	P Q R S Sup					
Α	7	5	2	6	13	
В	9	10	3	8	17	
С	5	4	7	3	5	
Requirement	5	11	15	4	35	

1. Obtain initial basic feasible by North West Corner Rule.

2. Obtain initial basic feasible by Matrix Minima Method.

Origins	Destinations						
	D	D E F Supply					
Α	60	40	240	3			
В	100	65	180	5			
С	260	210	60	6			
Demand	6	4	4	14			

- (b) Solve the following : (any **one**)
 - 1. Obtain optimal solution using MODI method.

	D ₁	D ₂	D ₃	D ₄	Supply
S ₁	19	30	50	10	7
S ₂	70	30	40	60	9
S ₃	40	8	70	20	18
Demand	5	8	7	14	34

2. The number of units available at factories X and Y are 200 and 300 respectively. The units demanded at retail stores A, B and C are 100, 150 and 250 respectively. Investigate the possibility of trans-shipment. The transportation cost in rupees per unit is given in the following table. Find the optimal shipping schedule.

3

	Factory	Factory	Retail Store		
	Χ	Y	A	В	С
Factory X	0	8	7	8	9
Y	6	0	5	4	3
Retail Store					
A	7	2	0	5	1
В	1	5	1	0	4
С	8	9	7	8	0

- 5. (a) What is assignment problem ? State the similarities and differences between assignment problem and transportation problem.
 - (b) Solve the following : (any **one**)
 - 1. Solve the following assignment problem and explain how the jobs be allocated, one per employee, so as to minimize the total man hours ?

		Employees						
		Ι	Π	III	IV	V		
	Α	10	5	13	15	16		
Jobs	B	3	9	18	13	6		
	C	10	7	2	2	2		
	D	7	11	9	7	12		
	Ε	7	9	10	4	12		

2. What should be the sequence of visit of the salesman from city to city so that the cost is minimum for the given problem ?

		To City					
		A	B	С	D	E	
	Α	x	2	5	7	1	
From City	В	6	x	3	8	2	
	С	8	7	∞	4	7	
	D	12	4	6	8 S	5	
	Ε	1	3	2	8	∞	

4

8

6