Seat No.:	

AA-152

April-2019

3rd Year Integrated, M.Sc. (C.A. & I.T.), Sem.-VI System Software

Time: 2:30 Hours] [Max. Max.			: 70	
1. (A)		Ansv	wer any two :	10
		(1)	Explain with figure fundamentals of language processing.	
		(2)	Write short note on Debug Monitors.	
		(3)	Explain concept of problem oriented and procedure oriented language processing with figure.	
	(B)	Defi	ne following:	4
		(1)	Preprocessor	
		(2)	Language migrator	
		(3)	Language detranslator	
		(4)	Semantic gap	
2.	(A)	Ansv	Answer any two :	
		(1)	Explain with example advance assembler directives.	
		(2)	Explain with example intermediate code variant – I and variant – II, comparison of variants.	
		(3)	Explain with example data structures of assembler pass 1.	
	(B)	Ansv	wer any one:	4
		(1)	Explain init(), poll(), halt() and ioctl() entry point.	
		(2)	Explain read entry point of character device driver. Why routine copyout is required in it?	
AA-	152			.O.

3.	(A)	Ansv	wer any two :	10
		(1)	Explain advanced macro facilities with example.	
		(2)	Explain data structure used in macro definition processing.	
		(3)	Explain with example "Positional Parameter", "Keyword Parameter", and	
			"Mixed Parameter".	
	(B)	Ansv	wer any one :	4
		(1)	Explain Pure and Impure Interpreter.	
		(2)	Explain overview of interpretation and benefits of interpretation.	
4.	4. (A) Answer any two :		wer any two :	10
		(1)	Explain with example LL(1) parsing and grammar use for it.	
		(2)	Explain with example Operator Precedence parsing algorithm.	
		(3)	Explain code optimization.	
	(B)	Ansv	wer any one :	4
		(1)	'f + $(x + y)$ * $((a + b)/(c - d))$ ' determine evaluation order for operators of	•
			an expression using RR labelling algorithm.	
		(2)	Generate quadruples and triples for 'a+b*c+c*d^f.	
5	Ans	Answer any two :		
	(1)	Write a short note on Loader.		
	(2)	Expl	ain with example program relocation algorithm.	
	(3)	Writ	e and explain program linking algorithm.	

AA-152 2