Seat No.:	

ML-128

March-2019

M.Sc.., Sem.-IV

507 : Physics

(Nuclear Physics – II & Advanced Quantum Mechanics – II)

Tin	ne : 2:	30 Ho	urs] [Max. Marks	: 70	
Instructions:		ons:	Symbols have their usual meanings.		
1. (a) (i)			Discuss types of nuclear reactions with necessary example and state the classification of energy.	7	
		(ii)	State the names of conservation laws and derive the amplitude $A_E = \frac{\psi(r)}{2\pi}$		
			$\left[\frac{i\hbar}{(E-E_0+i\gamma/2)}\right]$ in case of Breit Weigner dispersion.	7	
			OR		
(i) What do you mean by compound nucleus and derive the relatio					
			Probability of decay of compound nucleus $G_c(x)$ and scattering cross-		
			section of formation of compound nucleus $\sigma_{c}(x)$.		
		(ii)	Discuss Harmonic oscillator in detail.		
	(b)	Writ	e short answer : (any four)	4	
		(1)	State the limitation of liquid drop model.		
		(2)	Square well potential has edge while harmonic oscillator		
			potential has edge.		
		(3)	What do you mean by pick up reaction?		
		(4)	In case of vibration state in collective model, when $\lambda=1$ give the names of		
			different modes observed.		
		(5)	State the discrepancies in case of the magnetic moment of nuclei.		
		(6)	What is the total transparency when $k \le K$ in terms of E and V_0 ?		

2.	(a)	(i)	Write briefly fundamental interactions and nucleonium [nucleon-anti-nucleon system] in detail.	-
		(ii)	Explain Parity and G-parity in detail.	7
		()	OR	
		(i)	Explain Isospin and time reversal in detail.	
		(ii)	Write short note on CP-violation in K° meson decay.	
	(b)	Writ	te short answer : (any four)	4
		(1)	Define charge conjugate.	
		(2)	What is the spin of Fermions particle?	
		(3)	State the electric charges of three quarks.	
		(4)	State the CPT theorem.	
		(5)	What is the strangeness value of Σ -Hyperons ?	
		(6)	Intrinsic parity of BOSON is and that of FERMIONS	
3.	(a)	(i)	For $s = 1$, find out the matrix representations of J_x , J_y and J_z .	7
		(ii)	For spin state $s = 1$ find out S_x ' and S_y '. The new basis states are	7
			$ a\rangle = \frac{-1}{\sqrt{2}} [1\rangle - -1\rangle], b\rangle = \frac{-i}{\sqrt{2}} [1\rangle + -1\rangle] \text{ and } c\rangle = 0$	
			OR	
		(i)	What is the wave function for $s = 1/2$ if the spin component in the direction	
			of the unit vector 'n' has value(1/2) \hbar ? [Given : Evidently $(\overrightarrow{s}.\overrightarrow{n})\chi = (\hbar/2)\chi$]	
		(ii)	Define Pauli's spin matrices σ_x , σ_y , and σ_z . Show that	
			(1) $\sigma_x^2 + \sigma_y^2 + \sigma_z^2 = 3$	
			$(2) \sigma_{+} \sigma_{-} = 2(1 + \sigma_{z})$	
			$[S_x, S_y] = \hbar S_z$	
	(b)	Writ	te short answer : (any three)	3
		(1)	What will be the value of α_+^2 ?	
		(2)	What will be the value of $[S^2, S_z]$?	
		(3)	What is the unit of Pauli's spin matrices σ_x ?	
		(4)	For $s = 3$, how many spin states are there ?	
		(5)	When lowering operator J_i is operated on $ j+2, m+3\rangle$, then what will be the new states and eigen value?	
MI.	128		2	

4. (a) (i) Obtain Klein-Gorden equation. Using probability density and current density show that Klein-Gorden equation is unphysical for relativistic particle.

(ii) State the expression for energy of a charged particle obeying Klein-Gorden equation in a Coulomb potential. Explain the significance of the different terms.

7

7

3

OR

- (i) Show that the Dirac's equation automatically endows the hypothetical spinning motion of the electron.
- (ii) Dirac preferred a 1st order equation both in time and space co-ordinates. Why? Also explain why the dimension of the Dirac's matrices has to be even?
- (b) Write short answer: (any **three**)
 - (1) What are negative energy states? What is hole?
 - (2) Show that $\alpha_x \alpha_y + \alpha_y \alpha_x = 0$
 - (3) Give the physical interpretation of Dirac's matrices.
 - (4) Prove that $[\alpha_{y}\alpha_{z}, \alpha_{y}] = 2\alpha_{y}$.
 - (5) Distinguish the Klein-Gorden and Dirac's equations.

ML-128 3

ML-128 4