Seat No.	:	

AB-159

April-2019

M.Sc., Sem.-II

407: Mathematics (Metric Spaces)

Time : 2:30 Hours] [Max. Marks: 70

1. (A) Answer the following questions: 14

- State and prove the theorem about the structure of open sets in \mathbb{R} . (1)
- Let X be a metric space and $A \subset X$. Define the interior int(A) of A and the (2) closure \bar{A} of A. Find int(A) and \bar{A} for the following sets :
 - (i)
- (ii) $A = \{(x, y) \in \mathbb{R}^2 | x \notin \mathbb{Z}, y \notin \mathbb{Z} \}.$

OR

- Define equivalent metrics. If metrics d and d' are equivalent on X, show that (1) each open ball in X relative to d contains an open ball relative to d' and vice versa.
- Let X be a metric space and $E \subset X$. Define the limit point and cluster point (2) of E. Find the limit poins and cluster points of the following sets:
 - - $A = \mathbb{Q}(\sqrt{5})$ (ii) $A = \{(x, y) \in \mathbb{R}^2 | x \in \mathbb{Z}, y \in \mathbb{Z}\}.$
- (B) Attempt any Four:

4

- Show that in the discrete metric space (X, d), each subset of X is open and closed.
- (2) Define the norm $\| f \|_1$ on C[0, 1]. Give geometric meaning of $\| f \|_1$.
- (3) Let A be any finite set in metric space (X, d). Show that A is closed.
- (4) If A is open and B is closed in metric space (X, d), prove that A - B is open.
- (5) When do we say that T is the topology determined by metric d? Explain.
- For any $x = (x_1, x_2,, x_n) \in \mathbb{R}^n$, show that $||x||_{\infty} \le ||x||_2 \le ||x||_1$. (6)
- 2. (A) Answer the following questions:

14

- Prove that the limit of a convergent sequence in a metric space is unique.
- (2) Let A be a subset of a space X. Define the boundary of A. Find the boundary of the following sets:
 - $A = \mathbb{R} \times \{0\} \subset \mathbb{R}^2.$
- (ii) $A = \{(x, y) \in \mathbb{R}^2 | x \in \mathbb{Q}, y \in \mathbb{Q} \}.$

OR

- (1) Prove that a subset E of a metric space (X, d) is closed iff E contains all its limit points.
- (2) Define Dense set. Show that $D \subset \mathbb{R}$ is dense in \mathbb{R} iff each real number is a limit point of D.

(B) Attempt any **four**:

4

- (1) In \mathbb{R} , prove that $x_n \to x$ and $y_n \to y$ implies that $x_n y_n \to xy$.
- (2) Define the Cauchy sequence. Determine all the Cauchy sequences in the discrete metric space X.
- (3) Define complete metric space. Give an example of a complete metric space.
- (4) Consider the sequence $\{logn\}$ in \mathbb{R} . Is this a Cauchy sequence ? Explain.
- (5) State (without proof) Weierstrass Approximation Theorem.

3. (A) Answer the following questions:

14

- (1) Let X, Y be metric spaces. Let $f: X \to Y$ be a function. Show that the following are equivalent:
 - (i) f is continuous at x.
 - (ii) Given any $\in > 0$, there is $\delta > 0$ such that $d(f(x), f(y)) < \in$ whenever $d(x, y) < \delta$.
 - (iii) Given any open set V containing f(x) in Y, there is an open set U containing x such that $f(U) \subset V$.
- (2) Show that addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by +(a, b) = a + b and multiplication $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $\cdot(a, b) = a \cdot b$ are continuous functions.

OR

- (1) Let (X, d) be a metric space. Prove that the set $C(X, \mathbb{R})$ of all real-valued continuous functions on X is vector space with respect to pointwise operations.
- (2) Let f, g : $\mathbb{R} \to \mathbb{R}$ be continuous such that f(x) = g(x) for each $x \in \mathbb{Q}$. Then prove that f(x) = g(x) for each $x \in \mathbb{R}$.

(B) Attempt any three:

3

- (1) Prove that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous.
- (2) Prove that $\{(x, y) \in \mathbb{R}^2 / \sin x + \cos xy + ex^2 + y^2 > 1\}$ is open in \mathbb{R}^2 .
- (3) Define d(A, B). Show that there are disjoint, closed sets A and B such that d(A, B) = 0.
- (4) State (without proof) Urysohn's lemma.
- (5) Show that a circle and an ellipse in \mathbb{R}^2 are homeomorphic.

AB-159 2

- 4. (A) Answer the following questions:
 - Prove that any continuous function from a compact metric space to any other metric space is uniformly continuous.
 - (2) Prove that a topological space X is connected iff every continuous function $f: X \rightarrow \{-1, 1\}$ is constant.

OR

- (1) State and prove the Intermediate Value Theorem.
- (2) Prove that any compact subset of a metric space is closed and bounded.
- (B) Attempt any three:

3

14

- (1) Show that \mathbb{R} with respect to the usual metric d is not compact.
- (2) True or False: Every countable set is compact. Justify.
- (3) Give an example of a countable disconnected set. Explain.
- (4) Show that \mathbb{R} is homeomorphic to (-1, 1).
- (5) Show that connectedness is a topological property.

AB-159 3

AB-159 4