AA-157

April-2019

F.Y. M.B.A. Integrated, Sem.-II

Basic Mathematics

Time : 2:30 Hours] [Max. Marks : 70

Note: Log and Statistical tables will be provided on demand and use of scientific calculator is permitted.

1. (A) If
$$x = f(y) = \frac{ay + b}{cy - a}$$
, then prove that $y = f(x)$.

OR

 $f: N \to N$ and $f(x) = 5^x - 2$. If the range of the function f is $\{3, 8, 13\}$, then find the domain of f.

(B) Solve the following: (any 2)

- 10
- (1) The fixed cost in the production of bicycles is ₹ 2,00,000. The variable cost per unit is ₹ 1000. If the selling price of the bicycle is ₹ 1500, then find (i) Cost Function (ii) Revenue Function (iii) Break Even Point.
- (2) f: R \rightarrow R and g: R \rightarrow R. If $f(x) = x^2 + 3z + 1$ and g(x) = 2x 3, then find fog, gof, fof and gog
- (3) The demand function of sugarcane in the market is d = f(p) = 1605 5p² Find the demand of sugarcane for price ₹ 5, 6 and 8 per kg respectively. At what price the demand of sugarcane will be zero?
- 2. Solve the following: (any two)

14

(1) Find
$$\lim_{x \to 64} \frac{x^{\frac{2}{3}} - 64}{x^{\frac{3}{2}} - 512}$$

- (2) Find $\lim_{x \to 0} \left(\frac{4-3x}{4+5x} \right)^{\frac{1}{x}}$
- (3) Find $\lim_{n \to \infty} \frac{4n+9}{18n^2 300}$.

3. Solve the following: (any **two**)

14

- (1) Find the derivative of $y = 1 + \frac{1}{1 + \frac{1}{x}}$
- (2) Find $\frac{dy}{dx}$ if $y = \frac{x}{1+x^2}$. Also find its value when x = 2.
- (3) Find the derivative of $y = (3x^2 2)(x^2 + 7)$ with respect to x.
- 4. Solve the following: (any **two**)

14

- (1) Obtain maximum and minimum values of $y = x^3 + 6x^2 15x + 7$.
- (2) The demand function of a commodity is $x = \frac{100 p}{2}$. Find the marginal revenue when the demand is 15 units.
- (3) If $y = x^2 e^x$, then find $\frac{d^2y}{dx^2}$.
- 5. (A) Find the determinant value of $A = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix}$. Prove that $A^2 = I_n$.
 - (B) Solve the following: (any 2)

results.

4

- (1) If $A = \begin{pmatrix} 2 & 5 & 7 \\ 3 & -1 & 0 \\ 3 & 4 & 8 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 4 & 9 \\ 3 & -2 & -4 \\ -5 & 6 & 8 \end{pmatrix}$, then verify the following
 - (i) $[KA + B]3 \uparrow T = A \uparrow T + B \uparrow T$
 - (ii) $[KAB]^{\uparrow}T = B^{\uparrow}T A^{\uparrow}T$
- (2) Find the inverse of the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$ and verify that $AA^{-1} = I_n$.
- (3) Prove that $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ satisfies the equation $A^2 6A^2 + 9A 4I = 0$. Also obtain A^{-1} .

AA-157 2