Seat No.:	Seat No.:	
-----------	-----------	--

MP-128

March-2019

B.Sc., Sem.-VI

310: Mathematics

Time: 2:30 Hours] [Max. Marks: 70

1. (A) (1) Define the following term with graph:

7

7

- (i) Adjacent vertices
- (ii) Null graph
- (iii) Edge deleted sub graph
- (iv) k-regular graph
- (2) Define isomorphism of a graph. Discuss whether the following graphs are isomorphic or not?

(1) For any graph G with e edges and n vertices $v_1, v_2, v_3, \dots \dots v_n$ Prove that

$$\sum_{i=1}^{n} d(v_i) = 2e.$$

- (2) Define k-cube Q_K and prove that Q_K has 2^K vertices and 2^{k-1} edges. 7
- (B) Answer in short : (Any **TWO**)
 - (i) What is the smallest positive integer n such that complete graph Kn has at least 600 edges.
 - (ii) Draw 3 regular graph with 5 vertices.
 - (iii) Define neighbourhood set with example.

- 2. (A) (1) Let G be acyclic graph with n vertices and k connected components, then prove that G has a n-k edges.
 - (2) Without drawing actual graph, determine whether the graph is connected or

7

7

7

4

7

7

4

not, whose adjacency matrix is
$$A(G) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 2 & 2 & 1 \end{bmatrix}$$
.

OR

- (1) If T is a tree with n vertices then prove that it has precisely n-1 edges. 7
- (2) (i) Let u and v be distinct vertices of a tree T. Then there is precisely one path from u to v.
 - (ii) Let G be graph without any loops. If for every pair of distinct vertices u and v of G there is precisely one path from u to v, then G is a tree.
- (B) Answer in short : (Any **TWO**)
 - (i) Define forest with graph.
 - (ii) Draw star graph K_{1.6}
 - (iii) Give two trees with Five vertices.
- 3. (A) (1) State and prove Cayley theorem.
 - (2) Let G be a simple graph on n vertices. G has K components then the number of edges of G satisfies $n-k \le m \le \frac{(n-k)(n-k+1)}{2}$.

OR

- (1) Let G be a graph with n vertices, where $n \ge 2$. Then G has at least two vertices which are not cut vertex.
- (2) Prove that any simple graph with n vertices and more than $\frac{(n-1)(n-2)}{2}$. 6
- (B) Answer in short : (Any TWO)
 - (i) Draw Petersen graph.
 - (ii) Define Cut Vertex with example.
 - (iii) Let G be a connected graph with 14 edges then what is the maximum possible number of vertices in G?

MP-128 2

4.	(A)	(1)	A connected graph G is Euler if and only if the degree of every vertex is	
			even.	
		(2)	Prove that the vertex connectivity k(G) of graph G is always less than or	
			equal to the Edge connectivity $\lambda(G)$.	6
			OR	
		(1)	If G is a simple graph with $n \geq 3$ vertices and if deg $V + degW \geq n$ for each pair of non-adjacent vertices V and W then G is Hamiltonian.	7
		(2)	Discuss The Konigsberg bridges problem.	6
(B) A:		Ansv	Answer in short : (Any TWO)	
		(i)	How many different Hamiltonian cycle for complete graph k ₅ .	
		(ii)	Define Hamiltonian path and Hamiltonian cycle.	
		(iii)	Define Closure of graph G.	

MP-128 3

MP-128 4