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Instructions : (1)    All questions are compulsory. 
   (2)  Each question carries equal and 14 marks. 
   (3)  Statistical tables will be provided on request. Use of scientific 

calculator is allowed. 
 

1. (a)  (i)  Stating the purpose of Bonferronie inequality, prove it. 7 
  (ii)  In usual notations, derive relation between characteristic function and raw 

moments.  7 
OR 

   (i)  Define Characteristic function and state its properties.  7 

  (ii)  In usual notations, prove P[g(x) > t] < 
E(g(x))

t , t > 0 7 

 
 (b)  Answer any two of the following :  4 
  (i)  State Inversion Theorem on characteristic function.  
  (ii)  State Boole’s inequality and its use. 
  (iii)  State measure of dispersion, on which Chebyshev’s inequality is based. 

State its importance. 
 
2. (a)  (i)  In usual notations, X ~ N (, 16), show that median and mode of normal 

distribution are same and equal to .  7 
  (ii)  If X and Y are two independent Gamma variates with parameters (, ) and           

(, ) respectively, then derive the distribution of X / Y.  7 
OR 

   (i) In usual notations, for Weibull distribution with two parameters (, ), 
derive expressions for quartile deviation.  7 

  (ii)  State and prove additive property of Normal distribution.  7 
 
 (b)  Attempt any two for the following :  4 
  (i)  If X and Y are two independent Gamma variates with parameters (, ) and         

(, ) respectively, then state the distribution of X + Y. Also, state the mode 
of gamma variate with parameters (, ). 

  (ii)  State the moment generating function of Normal distribution. Hence, obtain 
first two cumulants.  

  (iii)  State two characteristics of normal distribution. 
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3. (a)  (i)  Define Two dimensional random variables, joint probability mass function, 
Discrete joint probability distribution function.  7 

  (ii)  In usual notations, prove that E(X) = E(E(Y/X)).  7 
OR 

   (i)  If the joint probability distribution of random variables (X, Y) be :  7 
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   Then, find (1) P(X = 1, Y = 2), P(X = 0, Y > 1), (2) marginal distribution of 
X and (3) conditional distribution of Y given X. 

  (ii)  Define conditional expectation. Hence or otherwise, in usual notations, 
prove that V(X) = E(V(X)) + V(E(X)).  7 

 

 (b)  Attempt any three of the following :  3 
  (i)  Define the independence of random variables. 
  (ii)  State the value of E(E(Y/X)). 
  (iii)  Give one example which uses two dimensional random variables. 
  (iv)  Define product moment. 
  (v)  Define Karl Pearson’s correlation co-efficient. 
 
4. (a)  (i)  In usual notations, State and prove Chapman Kolmogorov equation.  7 
  (ii)  For the Markov chain {Xn, n = l, 2,...}, with the state space S = {1,2,3} and 

the transition matrix P as shown below :  7 
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   and the initial distribution is 0 = ( 0.7, 0.2, 0.1), then obtain following :   

   P{X2 = 3}, P{X3 = 2, X2 = 3, X1 = 3, X0 = 2} 

OR 
   (i)  With respect to Markov chain, define terms giving one illustration for each : 

irreducible (or ergodic) Markov chain, time homogeneous Markov chain, 
one step transition probability, communicative state.  7 

  (ii)  What is Markov chain ? With respect to Markov chain, define transition 
matrix. Also, state properties of transition matrix. 7 

 (b)  Answer any three of the following :  3 
  (i)  Define Accessible states. 
  (ii)  Define persistent (recurrent) states. 
  (iii)  What is transitive state ? 
  (iv)  Define with respect to Markov chain state space. 
  (v)  Give one practical situation, where Markov chain is applied. 

_______________   
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1. (a) (i) State probability mass function of negative binomial distribution and obtain 

its moment generating function.  7 
  (ii) Define Hypergeometric distribution. Also, derive mean and variance of 

Hypergeometric distribution. 7 
OR 

   (i) If a random variable X follows geometric distribution, then in usual 
notations, derive mean and variance of X.  7 

  (ii) In usual notations, obtain recurrent relation for the central moments of 
negative binomial distribution.  7 

 

 (b)  Attempt any two of the following :  4  
  (i) State applications of Hypergeometric distribution. 
  (ii)    State the relation between mean and variance of negative binomial 

distribution. 
  (iii)  State memoryless property of geometric distribution. 
 
2. (a)  (i) Define Weibull distribution. In usual notations, obtain mean and first 

quartile of two parameter Weibull distribution.  7 
  (ii) Define lognormal distribution. Derive an expression mean and variance of 

Lognormal distribution.  7 
OR 

   (i) Derive mean and variance of Laplace distribution.  7 
  (ii) Derive characteristic function of Cauchy distribution.  7 
 

 (b)  Attempt any two of the following :  4 
  (i)     Give applications of Weibull distribution. 
  (ii) State probability distribution function of Cauchy distribution. For Cauchy 

distribution, mean does not exist. Give reason. 
  (iii)  State difference between Double Exponential and Laplace distributions. 
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3. (a)  (i) State probability density function of Normal distribution with parameters  
and 2. Derive median and mode of N (, 2).  7 

  (ii) Derive expression for central moments of Normal distribution with 
parameters  and 2.  7 

OR 
   (i) With respect to Bivariate Normal distribution, define marginal and 

conditional distributions.  7 
   If X and Y have bivariate normal distribution with parameters (3,1, 16, 25, 

0.6), Determine the following probabilities (A) Pr [3 < Y < 8], (B) Pr [3 < Y 
< 8/X = 7] 

  (ii) State and prove two random variable (X, Y) following Bivariate Normal 
Distribution, are independent if and only if  = 0.  7 

 
 (b)  Attempt any three of the following :  3 
  (i) The curve of probability density function of N(, 2) is symmetric. Do you 

agree ? 
  (ii) Define independence of random variables (X,Y), if they follow Bivariate 

Normal distribution. 
  (iii)  State moment generating function of N(, 2}. 
  (iv)  State mean of the conditional distribution of Y given X, where (X,Y) follow 

Bivariate Normal distribution. 
  (v)   If (X,Y) follow Bivariate Normal distribution, and if  = 0, then state the 

probability density functions of X and Y. 
 
4.  (a)  (i) State and prove Bernoulli’s Law of large numbers.  7 
  (ii)    Examine whether the weak law of large numbers holds good for the 

sequence  

   Xn, n = l, 2, 3, ... of n independent variables where P 

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1
n
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1
3. 7 

OR 
   (i) In usual notations, state and prove weak law of large number.  7 
  (ii) Define characteristic function. State its properties. Also, derive relation 

between raw moments and characteristic function.  7 
 
 (b)  Attempt any three :  3 
  (i) Define convergence in probability. 
  (ii) State Lindberg Levi’s and Liapounoff’s form of Central Limit Theorem.  
  (iii)  State inversion theorem on characteristic function.  
  (iv) Give one application of Central Limit Theorem.  
  (v)    State one use of Weak Law of Large Numbers. 

_______________ 


