Seat No.	:	
		-

7

7

7

7

AM-106

August-2021 B.Sc., Sem.-V

304: Mathematics

(Mathematical Programming)

Time: 2 Hours [Max. Marks: 50

Instructions: (1) Attempt any **THREE** questions from Q-1 to Q-8.

- (2) **Q-9** is **compulsory** question of short questions.
- (3) Notations are usual, everywhere.
- (4) Figures to right indicate marks of the question/sub-question.
- 1. (A) Prove that $E \subset R^n$ is convex set if and only if every finite convex linear combination of points in E also belongs to E.
 - (B) A company makes two types of belts. Belt X is high quality belt and belt Y is of lower quality. The respective profits are ₹ 4 and ₹ 3 per belt. Each belt of type X requires twice as much time as a belt of type Y and if all belts were of type Y, the company could make 1000 per day. The supply of leather is sufficient for only 800 belts per day (both X and Y combined). Belt X requires a fancy buckle and only 400 per day are available. There are only 700 buckles a day available for belt Y. Formulate the LPP to determine the optimal product mix.
- 2. (A) Prove that an intersection of two convex sets is a convex set. Is union of two convex sets convex always? Justify your answer.
 - (B) Mr. Khan required at least 10, 12 and 12 units of chemicals A, B and C for his garden. One liter of liquid product contains 3, 2 and 1 units of A, B and C respectively. A dry product contains 1, 2 and 4 units of each A, B and C per kilogram. If the liquid product sells for ₹ 3 per liter and the dry product sells for ₹ 2 per kilogram. Formulate the LPP to minimize the cost and meet the requirements.

AM-106 1 P.T.O.

- 3. (A) Prove that the set of all feasible solution of an LPP is closed convex set which is bounded below.
 - (B) Solve the following LPP by Simplex method:

7

7

7

7

7

7

$$\begin{aligned} \text{Max } Z &= 2x_1 + 4x_2 + 3x_3 + x_4 \\ \text{s.t. } x_1 + 3x_2 + x_4 &\leq 4, \\ 2x_1 + x_2 &\leq 3, \\ x_1 + 4x_3 + x_4 &\leq 3 \\ x_i &\geq 0, j = 1, 2, 3, 4. \end{aligned}$$

4. (A) Solve the following LPP by big-M method.

Min
$$Z = 2x_1 + x_2 + 3x_3$$

s.t. $x_1 + x_2 + 2x_3 \ge 5$
 $2x_1 + 3x_2 + 4x_3 = 12$
 $x_j \ge 0, j = 1, 2, 3.$

(B) Solve the following LPP by two phase method.

Min
$$Z = -3x_1 + x_2 + x_3$$

s.t. $x_1 - 2x_2 + x_3 \le 11$,
 $-4x_1 + x_2 + 2x_3 \ge 3$,
 $2x_1 - x_3 = -1$
 $x_j \ge 0$, $j = 1, 2, 3$.

- 5. (A) State and prove the fundamental theorem of duality.
 - (B) Solve the following LPP by Dual Simplex method:

Min
$$Z = 3x_1 + 5x_2$$

s.t. $x_1 + x_2 \ge 1$,
 $2x_1 + 3x_2 \ge 2$ and $x_j \ge 0$, $j = 1, 2$.

AM-106

6. (A) Prove that the dual of dual is primal for LPP.

7 7

7

7

7

(B) Use principle of duality to solve the following LPP:

$$Min Z = 4x_1 + 3x_2 + 6x_3$$

s.t.
$$x_1 + x_3 \ge 2$$
,

$$x_2 + x_3 \ge 5$$
 and $x_j \ge 0$, $j = 1, 2$.

- 7. (A) Prove that transportation problem has a feasible solution if and only if it is balanced.
 - (B) Solve the following assignment problem:

	A	В	C	D
I	40	35	38	41
II	42	35	34	40
III	38	34	34	37

- 8. (A) Prove that an $(m \times n)$ balanced transportation problem has (m + n 1) number of basic variables.
 - (B) Solve the following transportation problem by MODI method:

	D ₁	D ₂	D ₃	a _i
O ₁	16	20	12	200
O ₂	14	8	18	160
O ₃	26	24	16	90
b _i	180	120	150	450

- 8
- (a) Determine whether the set $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \ge 3\}$ is convex or non-convex.
- (b) Define Vertex. Also write the number of vertices of a tetrahedron.
- (c) Define: A degenerate basic feasible solution and an optimum solution.
- (d) When a LPP is said to have an unbounded solution and no feasible solution?
- (e) State any two differences between a Transportation problem and an Assignment problem.
- (f) Find the initial basic feasible solution to the following T.P. by North-West Corner method:

4

	D ₁	D ₂	D_3	D ₄	a _i
O ₁	11	13	17	14	250
O ₂	16	18	14	10	300
O ₃	21	24	13	10	400
b _i	200	225	275	250	

AM-106