1308E229

Candidate's Seat No:

BBA Sem-5 Examination CC 304

Operations Research & Q.T

Time: 2-00 Hours

August 2021

[Max. Marks: 50

SECTION - I

Q-1 (A) Write Mathematical formulation of Linear Programming Problem and write dual of the following problem

Minimize

Z = 5x + 7y

Subject to the following constraints

 $x + y \le 5$

 $3x + 8y \le 20$

 $5x + 2y \ge 12$

 $x, y \ge 0$

(B) Find the values of x and y which maximize the objective function

10 Marks

10 Marks

Z = 8x + 12y

Subject to the following constraints

 $x + y \leq 9$

 $x + 2y \le 12$

Q-2 (A) What is Balanced Transportation Problem and Unbalanced Transportation Problem and 10 Marks Solve the below Transportation Problem by Matrix Minima Method

Ĭ	portationi	TODICI	II Dy I	viatiin	TATTITITI	a Method.
		D_1	D_2	D_3	D_4	Supply
	01	30	60	30	120	30
	02	90	70	60	30	50
	O_3	120	60	150	270	20
	Demand	20	40	30	10	100

(B) Obtain Optimum Solution of the following Transportation Problem.

10 Marks

	D_1	D_2	D_3	D_4	Supply
O_1	16	14	11	15	14
O_2	18	19	12	16	17
O_3	14	13	16	12	5
Demand	6	10	16	4	

Q-3 (A) Define the following terms with Example.

10 Marks

- 1. Activity
- 2. Event
- 3. Dummy Activity
- 4. Network
- 5. Optimistic Time

(B) Draw PERT Diagram, obtain Critical Path and find EST, EFT, LST, LFT & Total Float

2-3 Activity 1-2 1-3 2-4 3-4 4-5 3-6 5-6 2-7 6-7 Time 10 5 13 2 6 2

10 Marks

1|Page

PTO

Write Mathematical Formulation of Assignment Problem and Explain Hungarian 10 Marks Q-4 (A) Method

(B) Answer the following:

10 Marks

1. Solve the following Assignment Problem to minimize the total cost.

		Machines					
		A	В	С	D		
	P	260	280	40	150		
Jobs	Q	190	170	380	180		
Jobs	R	260	240	110	130		
	S	100	190	150	80		

2. Solve the following Game.

		Player B	
	150	20	30
Player A	60	50	70
	-70	40	0

SECTION - II

Q-5 Multiple Choice Questions: (Attempt Any 10)

10 Marks

- 1. Basic condition for applying MODI method is
 - i) m + n 1
 - ii) m + n + 1
 - iii) m + n
 - $iv) m \times n$
- 2. In Balanced Transportation Problem
 - i) Total Demand is not Equal to Total Supply
 - ii) Total Demand is Equal to Total Supply
- 3. Penalty Method is also known as
 - i) Vogel's Method
 - ii) Matrix Minima Method
 - iii) North West Corner Method
- 4. For a transportation matrix of order 4×3 , how many no. of occupied cells are there for non-degenerate solution?
 - i) 7
 - ii) 6
 - iii) 5
 - ii) None
- 5. All variables in LPP must take non-negative values
 - i) True
 - ii) False
- 6. Linear programming was first introduced by
 - i) Walker & Kelly
 - ii) US Navy
 - iii) George B Dantjing & Marshall Wood
 - iv) None of the above
- 7. The linear inequalities or equations representing the restriction of resources in the problem are known as Objective function.
 - i) True
 - ii) False

0.	i) Simplex
	ii) Graphical
9.	The objective of assignment problem is to assign number of jobs to persons so that the time taken to complete the job is
	i) Maximum
	ii) Minimum iii) Neutral
10	
10.	The Assignment Problem is a special case of i) Replacement Problem
	ii) Transportation Problem
	iii) Sequencing Problem
	iv) None of the above
	Saddle point does not exist if
	i) $Maxi - Min = Mini - Max$
	$(ii) Mini - Max \neq Maxi - Min$
	Longest Path of the Network is known as
	i) Programme Evaluation & Review Technique
	ii) Critical Path Method
	iii) Total Float
1	The direction of the network should be from left to right. i) True
	ii) False
14.	The time of dummy activity is
	7) 1
	i) 0
	ii) Can be any value
15.1	By Dominance property the size of the payoff matrix is reduced to
	<i>1)</i> 4 × 4
	i) 2 × 2 ii) 3 × 3
ι	11) 3 ^ 3