1108E157

Candidate's Seat No:_____

B.Sc. Sem-5 Examination

CC 301

Statistics

Time: 2-00 Hours] August 2021 [Max. Marks: 50

Section-I

Attempt	anv	three
Aucini	CLLLY	un cc.

1. (a) Obtain standard error of first two fow moments of a sample of size	07 07
2. (a) Obtain Standard Circle of time central moment of a sample of size in	07 07
3. (a) Let $X_1, X_2,, X_n$ be a random sample from Poisson distribution with mean $\lambda > 0$. Show that $T = \sum_{i=1}^n X_i$ be the sufficient statistic for λ . also show that $W = (1 - \frac{1}{n})^T$, is unbiased for $e^{-\lambda}$.	07
(b) State and prove Cramer-Rao inequality.	07
4. (a) Let $X_1, X_2,, X_n$ be a random sample from Bernoulli distribution with parameter p, $0 . Show that \frac{\sum_{i=1}^{n} x_i}{n} \left(1 - \frac{\sum_{i=1}^{n} x_i}{n}\right) is consistent estimator of p(1-p).$	
	07
and σ^2 . Hence suggest MLE of $e^{\mu+\sigma^2/2}$.	07
(b) Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ distribution. Obtain moment estimate of μ and σ^2 .	07
6. (a) Let $X_1, X_2,, X_n$ be a random sample from $U(0, \theta), \theta > 0$, uniform distribution. Obtain MLE of θ . Is it unbiased? Justify your answer.	07
(b) Describe method of scoring to get MLE.	07
7. (a) Let $X_1, X_2,, X_n$ be a random sample from $N(\mu, \sigma^2)$ distribution. Obtain confidence interval for σ^2 when (i) μ is known and (ii) μ is unknown.	07
(b) Describe general method of constructing confidence interval for unknown parameter.	07
 8. (a) Describe the method to obtain confidence interval for unknown parameter using MLE. (b) Let X₁, X₂,, X_n be a random sample from exponential distribution with mean θ>0. Obtain confidence interval for θ based on its MLE. 	07 07

Section II

Attempt any eight.

08

- 1. Define standard error.
- 2. State standard error of sample correlation coefficient.
- 3. What is parameter?
- 4. What is parametric space?
- 5. Define unbiased estimator.
- 6. Define consistent estimator.
- 7. Define sufficient statistic.
- 8. Define efficiency of T_1 with respect to T_2
- 9. How many moments are required to obtain moment estimate of θ in U(- θ , θ) uniform distribution?
- 10. State moment estimator of θ for $f(x, \theta) = \theta e^{-\theta x} x > 0, \theta > 0$.
- 11. Define likelihood function.
- 12. State invariance property of ML estimator.
- 13. State full form of MVUE.
- 14. State pivotal statistic to obtain confidence interval for mean of normal distribution based on a random sample of size n.
- 15. State the name of the asymptotic distribution of MLE.

