0208M133

B.Sc. Sem.-6 Examination

CC - 310

Statistics

Time: 2-00 Hours] August 2021

[Max. Marks: 50

PAPER CODE AND NAME: STA -310 OPERATIONS RESEARCH (New Course)

SECTIONI (Attempt any three)

	(/(1/03/11/2011/11/11/11/11/11/11/11/11/11/11/11/11/	رعاه			
Q.1 A.	What is linear programming give its mathematical formulation also give it uses assumptions and limitations.				
В.	Discuss the graphical method of solving linear programming problem	7			
Q.2 A.	What is transportation problem explain it with suitable illustrations				
В.	Describe the matrix minima method to obtain basic feasible solution 7				
Q.3 A.	Describe Vogel's approximation method for solving transportation problem				
В.	Explain assignment problem with suitable illustration	7			
Q.4 A.	Explain Hungarian method of solving assignment problem	7			
В.	Derive basic feasible solution of the following transportation problem by North -West corner rule.				
Q.5 A.	Write differences between PERT and CPM	7			
В.	Write a short note on critical path method				
Q.6 A.	Explain terms (i) Optimistic time (ii) Pessimistictime (iii) Float time	7			
В.	Explain with illustrations the following terms in reference to PERT (i) Activity (ii) Dummy activity	7			
Q.7 A.	Write a note on Game theory.	7			
В.	Explain Dominance rule of game theory.	7			
Q.8 A.	Explain Simplex method.	7			
В.	What is Operation Research? Explain its various applications.	7			
		L			

SECTION II

Q.9	Attempt a	iny 8	8		
1	In which method of solving transportation problem the unit cost of transportation				
	is not taken into consideration.				
	(i)	VAM			
	(ii)	LCM			
	(iii)	NWCM			
	(iv)	HAM Method			
2	The outcome of the interaction of selected strategies of opponent in a game is				
	called	TOTAL SIGNED TO AND			
	(i)	Income			
	(ii)	Profit			
	(iii)	Payoffs			
	(iv)	Gains			
3	What can you say about EST and LFT for the activities which lie on critical path?				
	(i)	EFT <lft< th=""><th></th></lft<>			
	(ii)	EFT>LFT			
	(iii)	EFT=LFT			
	(iv)	None of the above			
4	EST of any initial activity is,				
	(i)	Zero			
	(ii)	Zero+te			
	(iii)	Non negative			
	(iv)	te			
5	Float time for any activities on a critical path is always				
	(i)	Positive			
	(ii)	Non negative			
	(iii)	>LFT			
	(iv)	zero			
6		le solution to a linear programming problem is			
	(i)	Convex			
	(ii)	Negative			
	(iii)	Unknown			
	(iv)	Infinite			
7	Linear pro	Linear programming is of the most frequently used method of			
	<i>(</i> -)	techniques.			
	(i)	Transportation problem			
	(ii)	Operations research			

	(iii)	Correlation				
	(iv)	PERT CPM				
8	If three or more variables are there in a linear programming problem then					
	method is used to solve it.					
	(i)	Graphical				
	(ii)	Complex				
	(iii)	Simplex				
	(iv)	All of the three				
9	Linear programming was first introduced by					
	(i)	Karl Pearson				
	(ii)	George B. Danting				
	(iii)	Newton				
	(iv)	Spearman				
10		s of the variables in linear programming problem are				
	(i)	Negative				
	(ii)	Zero				
	(iii)	Only positive				
	(iv)	Non negative				
11	In linear programming x y greater than equal to zero are called					
	(i)	Non negativity constraints				
	(ii)	Zero condition				
	(iii)	Objective function				
	(iv)	All of the above				
12	The most frequently used method when only two variables are involved in a					
		gramming problem is				
	(i)	Simplex method				
	(ii)	Graphical method				
	(iii)	Vogel's method				
	(iv)	EMV Method				
13	The limited	d resources can be expressed in the form ofin a linear				
	programm	ning problem.				
	(i)	Linear inequalities				
	(ii)	Objective function				
	(iii)	Optimum solution				
	(iv)	All of the three				
14	The non-negativity constraint asserts that the feasible region must be in the					
		quadrant.				
ĺ	(i)	First				
	(ii)	Second				
	(iii)	Third				
	(iv)	Fourth				
15	The feasib	le solution to a linear programming problem is				

14133-4

	Convex Negative Unknown Infinite	
16	In linear programming problem the optimal solution of a bounded feasible region always exists at Any point Vertex Origin All of the above	