2510E427

Candidate's Seat No:_____

B.Sc. Sem-6 Examination

CC 308

Mathematics

Time: 2-00 Hours October 2021

[Max. Marks: 50

₹~.

- Instruction: (1) All Questions in Section I carry equal marks
 - (II) Attempt any THREE questions in Section I
 - (III) Question 9 in Section II is COMPULSORY

SECTION I

- (A) Define Riemann integrable function. If $f \in R[a, b]$ then prove 01 7 that $f^2 \in R[a, b]$.
 - **(B)** Let f(x) = 3x on [0,1]. For $n \in \mathbb{N}$, define 7 $P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n}, 1\right\} \text{ then compute } \lim_{n \to \infty} U_{P_n} \text{ and } \lim_{n \to \infty} L_{P_n}.$ Is the function integrable? If so, find the value of the integral.
- State and prove Second Fundamental Theorem of Calculus. Q2 7
 - State Second Mean Value Theorem of Integral Calculus. Find a 7 point c in $[0, \frac{\pi}{2}]$ such that $\int_{0}^{1} \frac{1}{1+x^{2}} dx = 1$.
- (A) Let $\{x_n\}$ and $\{y_n\}$ be real sequences. Then prove that Q3
 - (I) $\inf x_n \le \lim x_n \le \overline{\lim} x_n \le \sup x_n$
 - (II) $\overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$
 - State comparison test. Hence show that series $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges 7 to the value e.
- (A) Prove that every Cauchy sequence in C is bounded. Also prove Q4 7 that C is complete.

PTO

7

- (B) State condensation test. Hence check the convergence 7 of $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}}$, $\alpha \in \mathbb{R}$.
- Q5 (A) State and prove Leibniz alternating series test.
 - (B) Define Conditionally convergent series. Check whether 7 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$ is conditionally convergent?
- Q6 (A) If $\sum a_n$ converges absolutely, then prove that the series $\sum a_n$ 7 converges. Is the converse true? Justify.
 - (B) Find the radius of convergence of the following power series whose nth terms are given below:
 - 1. $(n+1)z^n$
 - 2. $\frac{n^3}{n!} z^n$
- Q7 (A) State and prove Binomial series theorem.
 - (B) Derive Taylor's formula with the integral form of the remainder for $f(x) = \sin x$ about a = 0 in $(-\infty, \infty)$.
- Q8 (A) Derive Taylor's formula with Cauchy form of the remainder for $f(x) = (1-x)^{1/2}$ about a = 0 and -1 < x < 1.
 - (B) Find a power series solution of y'' + xy = 0 with y(0) = 1 and y'(0) = 0.

E 427-3

SECTION II

Q9 Attempt any FOUR short questions: 8

- (i) Give one function which is not Riemann integrable.
- (ii) Discuss convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.
- (iii) Give example of absolutely convergent series.
- (iv) The Taylor's series of f converges to f(x) at x = a iff $R_n(x) \to \underline{\hspace{1cm}}$ as $n \to \underline{\hspace{1cm}}$. (Fill in the blanks)
- (v) Is $\lim_{n\to\infty} x_n = 0$ a sufficient condition for convergence of $\sum_{n=0}^{\infty} x_n$. Justify.
- (vi) Does rearrangement of the terms in an infinite series may affect the sum? Justify by giving example.