Seat No.:	

10

10

ND-101

November-2021

B.B.A., Sem.-V

CC-304: Operation Research and Quantitative Techniques

Time: 2 Hours [Max. Marks: 50

Instructions:

- (1) All questions in Section I carry equal marks.
- (2) Attempt any 2 questions from Section -I.
- (3) Question -5 in Section -II is compulsory.

Section - I

- 1. (A) Define Operation Research. Explain application and scope of Operation Research.
 - (B) Jannet has an accounts question paper. It is divided in two parts. Each question of first part carries 10 marks and requires 15 minutes to solve it and each question paper contains the instruction that at least two questions from each section are to be attempted and maximum 8 questions are to be answered. Time duration of solving the paper is two and half hours. How many questions from each section should be answered to get maximum marks.
- 2. (A) Johaana Ltd. is producing raw material for the machinery. It has 3 godowns and 4 sales centers. From it find the Optimal Solution for the following transportation problem.

		T	R	Supply		
	P	8	9	6	3	19
Godowns	N	6	11	5	10	12
	C	3	8	7	9	14
Demand		15	6	11	13	45

(B) Find the feasible solution of Transportation Problem by Vogel's Approximation Method.

	A	В	C	D	Supply
A	24	16	18	22	30
В	12	14	20	14	14
C	10	18	14	12	16
Demand	12	8	22	10	

Job	Time
1 - 2	4
2 - 3	6
2 – 4	10
3 – 5	8
3 – 6	2
4 – 6	12
4 – 7	4
5 – 8	16
6 – 8	14
7 – 8	8

(B) Kakkad Ltd. has a project which is carried out through activities A to H. The time estimates of different activities are as follows. Determine the critical path. 10

Activity	Sequence	Time (In Hours)
A	1 – 2	6
В	2 – 3	8
С	3 – 4	12
D	2-5	16
Е	5 – 6	20
F	4 – 7	14
G	6 – 7	22
Н	7 – 8	10

4. (A) The payoff matrix of two players is given below. Decide the best strategy for both and also find the value of the game.

Players	В				
	-3	-1	-1	4	2
	2	1	0	1	1
A	-5	-4	-1	-3	5
	4	2	-5	1	-7

ND-101 2

(B) 3J Car Service has a surplus of one car in each of the cities A, B, C, D, E, F and a requirement of one car in each of the cities P, Q, R, S, T and U. The distance (in miles) between cities with a surplus and cities with a requirement are given in the matrix below. How should the cars be dispatched so as minimize the total distance travelled?

1	Λ
L	v

	P	Q	R	S	T	U
A	41	62	39	52	25	51
В	22	29	49	65	81	50
С	27	29	60	51	32	32
D	45	50	48	52	37	43
E	29	40	39	26	30	33
F	82	40	40	60	51	30

5.

		Sect	ion –]	П	
Give	e the f	following answer: (Attempt an	ny 10)		10
(1)	Whi	ch problem is studied in the f	irst ph	ase of operation research?	
	(A)	Environment	(B)	Social	
	(C)	Mental	(D)	None	
(2)	_		_	ving bad answers to problems to which This definition is given by whom?	
	(A)	Churchman	(B)	T. K.	
	(C)	V. T.	(D)	3J	
(3)	Line	ear Programming was first into	roduce	ed in which year?	
	(A)	1947	(B)	1950	
	(C)	1991	(D)	2020	
(4)	Line	ear Programming was first into	roduce	ed by whom ?	
	(A)	George R. Dantjing	(B)	V.T. Kakkad	
	(C)	Marshall Wood	(D)	None	
(5)	Fron	n the following what is the fu	ll form	of VAM ?	
	(A)	Vogel's Approximation Me	thod		
	(B)	Void Algorithm Mean			
	(C)	Valid Arithmetic Mean			
	(D)	None			
(6)	Mat	rix Minima is also known as _		<u>.</u>	
	(A)	North-West	(B)	Least Cost	
	(C)	Roth	(D)	None	

(7)	or totalle		are not	equal in transportation problem then it i				
	(A)	Balanced	(B)	Unbalanced				
	(C)	Both	(D)	None				
(8)	Wha	t is the full form of MODI 1	method '	?				
	(A)	(A) Minimum Optimum Demo Insurance						
	(B)	(B) Modified Distribution Method						
	(C)	(A) or (B)						
	(D)	None						
(9)	Fron	n the following what is the f	formula	of Total Float in Pert & CPM?				
	(A)	EFT-LST	(B)	LFT-EFT				
	(C)	LST-EST	(D)	None				
(10)	In PI	ERT, the completion of an a	ectivity i	s called				
	(A)	Node	(B)	Event				
	(C)	Both	(D)	None				
(11)	In C	PM, the completion of an ac	ctivity is	called				
	(A)	Event	(B)	Virtual				
	(C)	Node	(D)	None				
(12)	The	dominance property is used	to redu	ce of the payoff matrix.				
	(A)	Column	(B)	Row				
	(C)	The Size	(D)	None				
(13)	From the following, in which situation the saddle point exist?							
	(A)	Minmin = Maxmax	(B)	Maxmax = Minmin				
	(C)	Maximin = Minimax	(D)	None				
(14)	Fron	n the following what is the r	name of	method to solve assignment problem?				
	(A)	Fisher	(B)	Passche				
	(C)	Hungarian Method	(D)	None				
(15)	The	optimum solution is obtaine	ed by wh	nich method in Assignment Problem?				
	(A)	Laspayere	(B)	TK				
	(C)	Hungarian Method	(D)	None				

ND-101 4