Seat No.:	
Seat No.:	

DG-101

December-2021

B.B.A., Sem.-III

CC-206: Elementary Statistics

Time: 2 Hours [Max. Marks: 50

Instructions: (1) Graph paper will be supplied.

- (2) Use of simple circular is allowed.
- (3) All question in **Section-I** carry equal marks.
- (4) Attempt any two questions in Section-I.
- (5) Question-5 in Section-II is compulsory.

Section - I

- 1. (A) A bag contains 5 white, 3 black and 6 red balls. 3 balls are taken at random from the bag. Find the probability that (i) 2 balls are of white colour. (ii) all the three balls are of different colours. (iii) none of the ball is black.
 - (B) Define Mathematical expectation and state its properties.
- 2. (A) State the properties of Binomial distribution and Poisson Distribution.
 - (B) 100 electric bulbs are found to be defective in a lot of 5000 bulbs. Find the probability that at the most 3 bulbs are defective in a box of 100 bulbs.

$$[e^{-2} = 0.1353]$$
 10

10

10

10

3. (A) Calculate correlation coefficient from the following data:

X	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
y	0.30	0.29	0.29	0.25	0.24	0.24	0.24	0.29	0.18	0.15

(B) In a trivariate distribution
$$2\sigma_1 = 3\sigma_2 = 4\sigma_3 = 12$$
 and $\Delta = \begin{bmatrix} 1 & 0.6 & 0.4 \\ r_{21} & 1 & 0.5 \\ r_{31} & r_{32} & 1 \end{bmatrix}$

Find
$$r_{32.1}$$
, $R_{3.21}$ and $b_{23.1}$

Sample No.	1	2	3	4	5	6	7	8	9	10
\bar{X}	128	131	135	129	132	141	121	155	139	142
R	21	31	39	21	19	30	25	28	25	20

-	R	21	31	39	21	1	9	30 [A	$\frac{25}{2} = 0.57$	28 7 D =	$\frac{25}{0 D} =$	2 1151
(B)	For	a SSP(20	00, 300	, 3), find	l (i) ASN	N (ii	i) AC		_	3	•	10
					Section		I					
Give	the f	ollowing	answer	: (Atten	npt any 1	10)						10
(1)	A so	et represe	enting a	all possi	ible out	com	ies c	of a rai	ndom ex	xperime	ent is ca	alled a
	(a)	· Sample	Space		(b	o)	Eve	nt				
	(c)	Probabi	-		(6	_	Nor	ne				
(2)	If E($(\mathbf{x}) = 5$, th	nen find	E(2X +	3)							
	(a)	1.2			(t)	0.01	12				
	(c)	0.12			(0	l)	Nor	ne				
(3)	Wha	nt is the o	ther nar	ne of cla	ssical d	efin	ition	of pro	bability	?		
	(a)	Axioma	atic		(t)	Mat	themati	cal			
	(c)	Statistic	cal		(6	l)	Nor	ne				
(4)	If A	and B are	e mutua	lly excl	usive ev	ents	the	n P(A 🤇	√B)=_			
	(a)	P(A)			(t)	P(B)				
	(c)	P(A) +	P(B)		(0	l)	Nor	ne				
(5)	A bo	ox contain	ns 6 bla	ck and 4	white b	alls	s. Tv	vo balls	are dra	wn at ra	andom f	from it.
	Find	the prob	ability t	hat both	are blac	ck.						
	(a)	0.23			(t)	0.24	1				
	(c)	1			(0	l)	0.33	3				
(6)	If th	ere is a m	natter of	acciden	ıt,		distr	ibution	is follow	wed.		

- - (a) Poisson

Binomial (b)

(c) Normal (d) None

DG-101

(7)	The Binomial Distribution is a distribution of variable.									
	(a)	Random	(b)	Discrete						
	(c)	Continuous	(d)	None						
(8)	The mean of Poisson Distribution is 1.44, its S.D. =									
	(a)	1.22	(b)	1						
	(c)	1.2	(d)	None						
(9)	Hyper Geometric Distribution has a wide application in									
	(a)	S.Q.C.	(b)	Correlation						
	(c)	Normal	(d)	Acceptance Sampling						
(10)	The formula of mean for Hypergeometric distribution is									
	(a)	np	(b)	$\frac{mr}{m+n}$						
	(c)	e ^{-m}	(d)	None						
(11)	In rank correlation if $\sum d^2 = 0$, $r = \underline{}$.									
	(a)	-1	(b)	0						
	(c)	+1	(d)	None						
(12)	If $b_{12.3} = 0.1705$ and $b_{21.3} = 2.7225$, find $r_{12.3}$.									
	(a)	0.5	(b)	1.5						
	(c)	0.6813	(d)	None						
(13)	On v	which distribution C-Chart is	based	?						
	(a)	Normal	(b)	Binomial						
	(c)	Poisson	(d)	None						
(14)	Which type of chart is more sensitive?									
	(a)	R	(b)	np						
	(c)	С	(d)	None						
(15)	If Pa = 0.92, what is Producer's Risk?									
	(a)	0.92	(b)	0.08						
	(c)	1	(d)	0						

DG-101 3

DG-101 4