Seat No. : _____

MK-105

May-2022

B.Sc., Sem.-V

CC-304 : Physics

[Max. Marks : 50

સૂચનાઓ : (1) વિભાગ-Iના બધા પ્રશ્નોના ગુણ સરખા છે.

Time : 2 Hours]

- (2) વિભાગ-Iમાંથી કોઇપણ ત્રણ પ્રશ્નોના ઉત્તર લખો.
- (3) વિભાગ-IIના પ્રશ્ન નં.9 ફરજિયાત છે.
- (4) સંજ્ઞાઓ તેમના પ્રચલિત અર્થ ધરાવે છે.
- (5) જમણી બાજુના અંક સંબંધિત પ્રશ્નના ગુણ દર્શાવે છે.

વિભાગ-I

1.	(A)	આદર્શ એમ્પ્લિફાયરનો આઉટપુટ અવરોધ કેટલો હોવો જોઇએ ? જરૂરી સૂત્ર તથા પરિપથની મદદથી તે સમજાવો. એમ્પ્લિફાયરનો આઉટપુટ અવરોધ કેવી રીતે નક્કી કરી શકાય ?	7
	(B)	હાર્મોનિક ડીસ્ટોર્શન(harmonic distortion) શું છે ? હાર્મોનિક ડીસ્ટોર્શનની ગણના માટે ત્રણ બિંદુ (three point) પદ્ધતિની ચર્ચા કરો.	7
2.	(A)	બેલ અને ડેસીબેલની વ્યાખ્યા આપો. શૂન્ય ડેસીબેલ સંદર્ભ લેવલ સમજાવો. ડેસીબેલની લાક્ષણિકતાઓ આપો. નીચે મુજબ સમીકરણ dB = $20 \log (I_o/I_i) + 10 \log (R_o/R_i)$ તારવો.	7
	(B)	(i) વોલ્ટમીટરનો ડેસીબેલ ઈન્ડીકેટર તરીકે ઉપયોગ વર્ણવો.	7
		(ii) જો પરિપથનો ઇનપુટ 5 V અને આઉટપુટ 2.5 V હોય અને ઇનપુટ તથા આઉટપુટ અવબાધો (impedances) સમાન હોય તો પરિપથ પર dB ગેઈનની ગણતરી કરો.	
3.	(A)	યુઝ્મિત કરેલ CE વિવર્ધકના ત્રણ વિભાગો (cascaded three stages) ના પરિપથની સ્વચ્છ આકૃતિ દોરો અને વોલ્ટેજ ગેઈનનું સૂત્ર મેળવો.	7
	(B)	CE એમ્પ્લિફાયરના નિમ્ન આવૃત્તિ (low frequency) રીસ્પોન્સ પર એમીટર બાયપાસ કેપેસીટરની અસર સમજાવો.	7
4.	(A) (B)	સમજાવો : અવરોધકીય ભાર સાથેનું અપ્રોક્સીમેટ (Approximate) CE ઉચ્ચ આવૃત્તિ મોડેલ. સ્ક્વેર વેવ (square wave) માટેનો એમ્પ્લિફાયર ઉચ્ચ આવૃત્તિ પ્રતિભાવ સમજાવો.	7 7

5.	(A) (B)	EX-OR ગેઈટની વિસ્તૃત સમજૂતી આપો. 3 ઈનપુટ અને 4 ઈનપુટ EX-OR ગેઈટના માત્ર પરિપથ ડાયાગ્રામ દોરો. ધારો કે આપેલ ઈનપુટ શરતો માટે આઉટપુટ high મળે છે : 0000, 0001, 0010, 0011, 1010, 1011, 1100, 1101, 1110 અને 1111.	7
		આનુષંગિક સત્યાર્થતા કોષ્ટક (Truth-table) અને કાર્નુમેપ બનાવો. કાર્નુમેપનો ઉપયોગ કરી સરળ બુલિયન સમીકરણ મેળવો અને આનુષંગિક સમ ઓફ પ્રોડક્ટ (sum of product) લોજીક પરિપથ દોરો.	7
6.	(A) (B)	RS ફ્લિપ ફ્લોપની વિસ્તૃત સમજૂતી આપો. JK ફ્લિપ ફ્લોપની (flipflop) વિશે નોંધ લખો.	7 7
7.	(A)	T-જાળતંત્ર અને π જાળતંત્ર માટે અરસપરસ સમતુલ્ય જાળતંત્રમાં રૂપાંતરણની રીત જરૂરી સૂત્રો તારવીને સમજાવો.	7
	(B)	મેક્સીમમ પાવર ટ્રાન્સફર પ્રમેય (Maximum Power Transfer Theorem) લખો અને સાબિત કરો.	7
8.	(A)	સમાંતર અનુનાદ પરિપથનું વિસ્તૃત વર્ણન કરો. far નું સમીકરણ તારવો અને $Z_{ m ar}=R_{ m ar}=rac{L}{CR}$ મેળવો.	7
	(B)	લેટિસ જાળતંત્રની વિસ્તૃત સમજૂતી આપો.	7
		વિભાગ-II	
9.	ટુંકા ઉ	કેત્તર આપો : (કોઈપણ આઠ)	8
	(1)	કયા સંજોગોમાં એમ્પ્લિફાયરના ઇનપુટ વોલ્ટેજનું મૂલ્ય લગભગ open સર્કિટ સોર્સ વોલ્ટેજ	
		(source voltage) જેટલું હશે ?	
	(2)	એમ્પ્લિફાયરના આઉટપુટ તરંગ સ્વરૂપમાં ડીસટોર્શન શા માટે મળે છે ?	
	(3)	ક્લાસ-B (class-B) એમ્પ્લિફાયર એટલે શું ?	
	(4)		
	(5)		
	(6)	વ્યાખ્યા આપો : ટ્રાન્ઝીસ્ટરનો ટ્રાન્સકન્ડક્ટન્સ, gm	
	(7)	CE એમ્પ્લિફાયરના કાસકેડ (cascade) જોડાણની રીતના નામ આપો.	
	(8)	ટ્રાન્ઝીસ્ટર એમ્પ્લિફાયર સ્ટેજ (transistor amplifier stage) ના કાસ્કેટ માટે ટ્રાન્સફોર્મર (transformer) ના ઉપયોગનો મુખ્ય ફાયદો કયો ?	
	(9)		
	(10)	ચાર ચલ માટે કાર્નુમેપ (Karnaugh map) માં કેટલી એન્ટ્રી હશે ?	
	(11)	ડી-મોર્ગન (De-Morgan's) પ્રમેચના સમીકરણો લખો.	
	(12)	બુલિયન સમીકરણ $\mathbf{Y} = \mathbf{A}\overline{\mathbf{A}}+\overline{\mathbf{A}}\mathbf{B} + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{\dot{-j}}$ સરળીકરણ કરો.	
	(13)	બાયલેટરલ જાળતંત્ર એટલે શું ?	
	(14)	થેવેનીનના પ્રમેયનું કથન લખો.	
		રેસીપ્રોસીટી પ્રમેયનું કથન લખો.	
	(16)	Q ફેક્ટરની વ્યાખ્યા લખો.	
MK	_105	2	

2

Seat No. : _____

MK-105

May-2022 B.Sc., Sem.-V

CC-304 : Physics

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (1) All questions in Section-I carry equal marks.
 - (2) Attempt any three questions in Section-I.
 - (3) Question-9 in Section-II is compulsory.
 - (4) Symbols have their usual meaning.
 - (5) Number to right side of questions indicates marks.

SECTION-I

MK-	-105	3 P.T.	0.
	(B)	Explain amplifier high frequency response for the square wave.	7
4.	(A)	Explain : Approximate CE High frequency model with a resistive load.	7
	(B)	Explain the effect of emitter bypass capacitor on low frequency response of CE amplifier.	7
3.	(A)	Draw neat circuit diagram of three cascaded stages of coupled CE amplifier and derive the equation for voltage gain.	7
		(ii) If the input to a network was 5 V and the output 2.5 V, and the input and output impedances were equal, determine the dB gain across the network.	7
	(B)	(i) Describe uses of a voltmeter as a decibel indicator.	
2.	(A)	Define bel and decibel. Explain zero decibel reference level. Give characteristics of decibel. Derive $dB = 20 \log (I_o/I_i) + 10 \log (R_o/R_i)$	7
	(B)	What is harmonic distortion ? Discuss three point method of calculating harmonic distortion.	7
1.	(A)	What would be the output resistance of an ideal amplifier ? Explain it with necessary formula and circuit. How one can determine output resistance of an amplifier ?	7

(A) (B)	 Explain EX-OR gate in detail. Draw only circuit diagrams of 3 input and 4 input EX-OR gates. Suppose outputs is high for the input conditions : 0000, 0001, 0010, 0011, 1010, 1011, 1100, 1101, 1110 and 1111. Draw the corresponding truth-table and Karnaugh map. Derive simplified Boolean equation using Karnaugh map and draw the corresponding sum of product logic circuit. 	7 7
(A) (B)	Explain in detail RS flipflop. Write a note on JK flipflop.	7 7
(A) (B)	Explain the method to convert a T-network and π -network into equivalent network and vice versa by deriving necessary formula. State and prove "Maximum Power Transfer Theorem".	7 7
(A)	Describe parallel resonance circuit in detail. Derive an equation of far and obtain $Z_{ar} = R_{ar} = \frac{L}{CR}$.	7
(B)	Explain in detail the Lattice Network.	7
	SECTION-II	_
 (1) (2) (3) (4) 	Under what conditions is the input voltage to an amplifier substantially the same as the open circuit source voltage ? Why there is distortion at the output waveform in an amplifier ? What is Class-B amplifer ? Where is dB scale used ?	8
(6) (7) (8)	Define : Trans-conductance gm of transistor. Name the methods to cascade CE amplifier. What is the principle advantage of using transformer to cascade transistor amplifier stages.	
 (11) (12) (13) (14) (15) 	Name the circuit used as 1 bit memory storage device. How many entries are there on a four variables Karnaugh map ? Write equations of De-Morgan's theorem. Simplify Boolean equation $Y = A \overline{A} + \overline{A} B + AB + B$. What is bilateral network ? Write statement of Thevenin's theorem. State the Reciprocity theorem.	
	 (B) (A) (B) (B)	 (B) Suppose outputs is high for the input conditions : 0000, 0001, 0010, 0011, 1010, 1011, 1110, 1101, 1110 and 1111. Draw the corresponding truth-table and Karnaugh map. Derive simplified Boolean equation using Karnaugh map and draw the corresponding sum of product logic circuit. (A) Explain in detail RS flipflop. (B) Write a note on JK flipflop. (A) Explain the method to convert a T-network and π-network into equivalent network and vice versa by deriving necessary formula. (B) State and prove "Maximum Power Transfer Theorem". (A) Describe parallel resonance circuit in detail. Derive an equation of far and obtain Z_{ar} = R_{ar} = L/CR. (B) Explain in detail the Lattice Network. SECTION-II Answer in short : (Any Eight) (1) Under what conditions is the input voltage to an amplifier substantially the same as the open circuit source voltage ? (2) Why there is distortion at the output waveform in an amplifier ? (3) What is Class-B amplifer ? (4) Where is dB scale used ? (5) Define : Sag (6) Define : Trans-conductance gm of transistor. (7) Name the methods to cascade CE amplifier. (8) What is the principle advantage of using transformer to cascade transistor amplifier stages.