43	1	ź	~7
1	ĺ	1	1

1205E223

Candidate's	Seat	No	»

MSc Sem.-3 Examination

503 EA

Mathematics (Adv Calculus) (New)

May 2022

[Max. Marks: 50

7

7

instructions:

Time: 2-00 Hours]

- 1. All the questions in Section-I carry equal marks.
- 2. Attempt any Three questions in Section-I.
- 3. Questions in Section-II are COMPULSORY.

Section-I

- 1. (A) Find $\partial_x w$ and $\partial_y w$ in terms of the partial derivatives $\partial_1 f$, $\partial_2 f$, and $\partial_3 f$, where $w = f(2x y^2, x \sin 3y, x^4)$.
 - (B) Find the extreme values of $f(x,y)=3x^2-2y^2+2y$ on the set $\{(x,y):x^2+y^2\leq 1\}$.
- 2. (A) Find and classify the critical points of the function f(x,y) = xy(12 3x 4y). 7
 - (B) Find the Taylor polynomial of order 4 based at a = (0,0) for the function $f(x,y) = x \sin(x+y)$.
- 3. (A) Investigate the possibility of solving the equations

$$\begin{cases} xy + 2yz - 3xz = 0\\ xyz + x - y = 1 \end{cases}$$

for two of the variables as functions of the third near the point (x, y, z) = (1, 1, 1).

- (B) Let $F(x,y) = x^2 + 6y^2 6$. Determine whether the set $S = \{(x,y) : F(x,y) = 0\}$ is a smooth curve. Draw a sketch of S. Examine the nature of S near any point $\Delta F = 0$. Near which points of S is the graph of a function y = f(x)? x = f(y)?
- 4. (A) Find an equation of the tangent plane to the following parametrized surface at the point (1, -2, 1).

$$x = e^{u-v}, \ y = u - 3v, \ z = \frac{1}{2}(u^2 + v^2)$$

(B) Let $(u, v) = f(x, y) = (e^x \cos y, e^x \sin y)$.

Compute the Jacobian detDf. Draw a sketch of the images of some of the lines x = constant and y = constant in the uv-plane. Find a formula for a local inverse of f

- 5. (A) Find the volume of the region in \mathbb{R}^3 above the trianle T in the xy-plane with vertices (0,0),(1,0) and (1,2) and below the surface $z=xy+y^2$. 7
 - (B) Find the centroid of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{3} + \frac{y}{5} + \frac{z}{7} = 1$. 7
- 6. (A) An object with mass density $\rho(x,y,z)=xy$ occupies the cube $\{(x,y,z): 0 \le x, y, z \le 2\}$. Find its mass and center of mass. 7
 - (B) Find the volume of the region inside both the sphere $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 1$. 7
- 7. (A) Compute $\int_{C} \mathbf{F} \cdot d\mathbf{x}$, where $\mathbf{F}(x,y) = (x^2y, x^3y^2)$ and C is the closed curve formed by the portions of the line y = 4 and the parabola $y = x^2$, oriented counterclockwise. 7
 - (B) Let S be the annulus $1 \le x^2 + y^2 \le 4$. Compute $\int_{\partial S} (xy^2dy - x^2ydx)$ by using the Green's theorem. 7
- 8. (A) Compute $\iint_{\Omega} (x^2 + y^2) dA$, where S is the portion of the sphere $x^2 + y^2 + z^2 = 4$ with $z \ge 1$. 7
 - (B) Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA$, 7 where $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + z \mathbf{j} - y \mathbf{k}$ and S is the unit sphere $x^2 + y^2 + z^2 = 1$, oriented so that the normal points upward.

Section-II

8

- (1) The directional derivative of the function $f(x,y) = xy^2 + \sin \pi xy$ at the point (1,-2) in the direction $(\frac{4}{5}, \frac{3}{5})$ is
 - (A) $\frac{1}{5}(4+5\pi)$ (C) $-\frac{1}{5}(4+5\pi)$
 - (B) $\frac{1}{5}(4-5\pi)$ (D) $-\frac{1}{5}(4-5\pi)$

- (2) The tangent plane to the surface $z = x^2 y^3$ at the point (2, -1, 5) is
 - (A) 4x 3y z = 6

(C) 4x - 3y - z = -6

(B) 4x + 3y - z = 6

- (D) 4x + 3y + z = -6
- (3) The curve $f(s) = (s^3 1, s^3 + 1)$ is a
 - (A) circle

(C) ellipse

(B) parabola

- (D) straight line
- (4) Let F(x,y) = (x-1)y(x+y).

Let $S = \{(x, y) : F(x, y) = 0\}.$

Near which of the points given below is S the graph of a function y = f(x)?

(A) (1,0)

(C) (1,1)

(B) (2,-2)

- (D) (0,0)
- (5) Let $f_1(x, y, z) = x y + z$, $f_2 = x^2 + y^2 + z^2 2xy$. $f_3(x, y, z) = y x + z$. The functional relation between the functions is
 - (A) $f_2 = \frac{1}{4}(f_1 + f_3)^2 + \frac{1}{4}(f_1 f_3)^2$
- (C) $f_2 = 2f_1 f_3$
- (B) $f_3 = \frac{1}{4}(f_1 + f_2)^2 + \frac{1}{4}(f_1 f_2)^2$ (D) $f_2 = \frac{1}{2}(f_1 + f_3)^2 + \frac{1}{2}(f_1 f_3)^2$
- (6) The arc length of the parametrized curve $\mathbf{g}(t) = (3\cos t, 3\sin t, 4t)$. $0 \le t \le 2\pi$, is
 - (A) 5π
- (B) 2π
- (C) 10π
- (D) 20π
- (7) Let $\mathbb{F}(x, y, z) = (x^2z, 4xyz, y 3xz^2)$. Then curl \mathbb{F} equals
 - (A) (2z + 3, 0, -2x)

(C) (-2z, 0.6x)

(B) (4z + 3, 0.6x)

- (D) $(1-4xu, 3z^2-x^2, 4yz)$
- (8) Let $\mathbb{F}(x, y, z) = (xy^2, xy, xy)$. Then div \mathbb{F} equals
 - (A) $x + y^2$

(C) $x + z + y^2$

(B) $2x + y^2$

(D) $z + x^2$