4 /8/2 ## 1105N253 Candidate's Seat No :_ Integ LLB Sem.-3 Examination ILBBA 202 O. R. & Q. T. May 2022 Time: 2-00 Hours] [Max. Marks: 60 | Q.1 | | (| QUESTIO | NS | | MARKS | |--------|---|-------------|----------|----------|-------------|-------| | | Solve the following transportation problem for minimising the total cost. If possible give alternate solution also. | | | | | | | | Factory | Sales Depot | | | Availabilit | | | | ractory | S1 | S2 | S3 | у | | | | F1 | 7 | 10 | 5 | 90 | | | | F2 | 12 | 9 | 4 | 50 | | | | F3 | 7 | 3 | 11 | 80 | | | | F4 | 9 | 5 | 7
110 | 60 | | | | Requirement | 120 | 100 | | | | | Q.1(A) | What is O.R.? Explain the techniques and tools of O.R. Solve the following Game using dominance property. | | | | | | | | | | Player 2 | | | | | | | 9 | | 12 | 8 | | | | | | | | | | | | Player | 13 | 8 | 19 | 10 | | | | Player | 13 | 8 | 19
7 | 10 | | | Q.2 | A project has the following time schedule. | | | | | | | |---------|--|---|--------|------------|----------------|----|--| | | Activity | Duration | | | | | | | | 1-2 | 2 | _ | | | | | | | 1-3 | 5 | | | | | | | | 2-4 | 4 | | | | | | | | 3-4 | 3 | | | | | | | | 3-5 | 5 | | | | | | | | 4-6 | 6 | | | | | | | | 5-7 | 2 | | | | | | | | 6-7 | 4 | | | | | | | | Identify duration | ne Diagram. the critical n. ine EFT, ES | path & | | | | | | | | | OR | | | | | | | regarding production on different machines are given in the following table. Operator Machines | | | | | | | | | | A | В | C | D | | | | | 1 | 15 | 10 | | | | | | | 2 | 16 | 9 | 12 | 13 | | | | | 3 | 13 | 9 | 14 | 14 | | | | | 4 | | | 14 | 12 | | | | | 5 | 12 | 10 | 11 | 9 | | | | | | 13 | 14 | 12 | 10 | | | | Q.2 (B) | What is the ob | iective of a | gianma | st muchla | 9 E 1 ' d | 00 | | | (- (-) | Hungarian Me | thod in detail | l. | it problem | 22 Explain the | 08 | | | 2.3 | A company manufactures two kind of Machines each requiring different manufacturing technique. The Deluxe machine requires 18 hours of labours, 9 hours of testing and yields a profit of rupees 400. The second machine requires 3 hours of labour 4 hours of testing and yields a profit of rupees 200. There are 800 hours of labour and | | | | | 18 | | | machine to be no more than 150. The management wants to know the number of each model to produce monthly that will maximize total profit. Formulate and solve this as a linear programming problem graphically. | | | | | | | |---|--|--|-------------|----|--|--| | | | OR | | | | | | Represent the following information in form of a network. Find the expected time of each activity and obtain the critical path. | | | | | | | | | Tin | ne Estimates (W | eeks) | 1 | | | | Activity | Optimistic | Pessimistic | Most Likely | | | | | 1-2 | 4 | 9 | 14 | | | | | 2-3 | 1 | 5 | 18 | | | | | 2-4 | 8 | 10 | 17 | | | | | 3-5 | 3 | 6 | 8 | | | | | 4-5 | 2 | 4 | 5 | | | | | 4-6 | 3 | 7 | 10 | | | | | 5-7 | 3 | 7 | 10 | | | | | 5-8 | 4 | 8 | 9 | | | | | 7-9 | 4 | 9 | 14 | | | | | 8-9 | 2 | 6 | 10 | | | | | 9-10 | 4 | 11 | 18 | | | | | 6-10 | 4 | 7 | 9 | | | | | | Represent Find the excritical part Activity 1-2 2-3 2-4 3-5 4-5 4-6 5-7 5-8 7-9 8-9 9-10 6-10 Required: | Represent the following Find the expected time oritical path. Activity Time | OR | OR | | | | Q.3 (B) | Solve the following transportation problem using (1) North – West Corner rule (2) Least Cost Method. | | | | | | |---------|--|--------------|--------------|----|--------|----| | | Sales | Demand | | | | | | | Outlets | P1 | P2 | P3 | Demand | | | | S1 | 7 | 12 | 9 | 16 | | | | S2 | 8 | 10 | 6 | 10 | | | | S3 | 10 | 9 | 12 | 12 | | | | Supply | 8 | 11 | 19 | | | | Q.4(a) | Short Notes (| Any three of | out of Five) | | | 09 | | | Explain in brief any three Limitation PERT. List down the assumption of linear programming. What are the types of estimates are taken for the duration of time of activities. Explain in brief. Explain Matrix minima Method. Write any three advantages of duality. | | | | | | | (b) | Objectives or one line answers or true false | | | | | | | | (1) If maximin value = Minimax value then it is said to be that game has no saddle point. True or False. (2) In CPM completion of activity is called event. True of False. (3) List down any two uses of Linear Programming Problem. (4) What is the special case of linear programming problem? (5) Linear programming was introduced for in the year (6) What is the main objective of the assignment problem? (7) If all the elements of a particular column are the corresponding elements of any other column, then that column is dominated by other column. | | | | | |