3/17

1105E175

Candidate's Seat No :_____

MSc Sem.-3 Examination 502 Mathematics May 2022

Time: 2-00 Hours]

[Max. Marks: 50

 Each the question in Section-I carry equal 14 marks. Attempt any Three questions from Section-I 3. Questions in Section-II are COMPULSORY Section-I (A) Define the group S₃. What is the centre Z(S₃) of the group S₃? [7] (B) Define a cyclic subgroup of a group G. How many generators does the group \mathbb{Z}_{20} have? [7](A) Give with details an example of an infinite non-Abelian group. [7] (B) State (without proof) the fundamental theorem of finite Abelian groups. How many Abelian groups of order 50 are there? Justify. [7] (A) What is the order of the permutation α = (12)(2345) in the group A₁₀? (B) Define simple groups. Determine the values of n for which the group \mathbb{Z}_n is simple. [7] (A) Define an automorphism. Prove that Aut(Z_n) is isomorphic to U(n). [7](B) Define a normal subgroup. Give an example of group G and its subgroup H such that H is not normal in G. [7] (A) Prove or disprove: The group (R, +) is isomorphic to the group (Q, +). [7] (B) Let |G| = 60 and H be a subgroup of G, write down all the possible orders of H? [7]

E-175-2					
6. (A) Define homomorphism. If $\phi: G \to G'$ is a homomorphism then prove	that d				
sends the identity to the identity					
(B) Define simple groups. If $ G = 11$, show that G is simple.	[7] [7]				
7. (A) What is the order of the group $U(50)$? Explain.	[7]				
(B) Define the conjugacy class cl(a) of the element a ∈ G.					
When does $cl(a) = \{a\}$ hold for all $a \in G$? Explain.	[7]				
8. (A) How many homomorphism are there from the group Z to the group Z?	[7]				
(B) How many elements of order 2 are there in the group $\mathbb{Z}_{100} \oplus \mathbb{Z}_{200}$?					
Section -II					
 Any infinite cyclic group G is isomorphic to the group 	[8]				
(A) (R +)					
(B) $(\mathbb{Z}, +)$ (C) $(\mathbb{Q}, +)$ (D) $(\mathbb{Z}_n, +_n)$					
2. Let a be any element of group G. Then $ a = a^{-1} $					
(A) Always true.(C) True, if G is finite					
(B) True, if G is cyclic. (D) True, if G is Abelian.					
3. What is the order of the group $G = \mathbb{Z}_7 \oplus U(7)$?					
(A) 42 (C) 52					

(D) 34

(B) 24

4.	How many elements of the g	roup A_5 have	orde	r 3?
	(A) 1		(C)	15
	(B) 20		(D)	24
5.	What is the order of the cent	ter $Z(S_3)$ of	the gr	oup S_3 ?
	(A) 6		(C)	1
	(B) 4		(D)	2
6.	Which of the following group	s is simple?		
	(A) S ₃		(C)	$(\mathbb{Z}_4, +_4)$
	(B) $(\mathbb{Z}, +)$		(D)	$(\mathbb{Z}_7,+_7)$
7.	For which values of m and n ,	, the group G	$S = \mathbb{Z}_{r}$	$_{n}\oplus\mathbb{Z}_{m}$ is cyclic?
	(A) $m = 10, n = 15$		(C)	m = 12, n = 21
	(B) $m = 10, n = 21$		(D)	m=4,n=28
8.	What is the order of the grou	up $Aut(\mathbb{Z}_8)$?		
	(A) 10		(C)	4
	(B) 1		(D)	2