Seat No. : \qquad

JH-124

June-2022
M.Sc., Sem.-II

410 : Mathematics
(Partial Differential Equations)
Time : 2 Hours]
[Max. Marks : 50

PART - A

Attempt any THREE questions:

1. (a) Find the complete integrals of the given partial differential equation with Charpit Method :
$2(z+x p+y q)=y p^{2}$
(b) Eliminate the parameters a and b from the following equation and find the corresponding partial differential equation
$z^{2}\left(1+a^{3}\right)=8(x+a y+b)^{3}$
2. (a) Find the complete integral of $2 \mathrm{z} x-p x^{2}-2 q x y+p q=0$
(b) Find the general integral of $\left(\mathrm{z}^{2}-2 \mathrm{yz}-\mathrm{y}^{2}\right) \mathrm{p}+x(\mathrm{y}+\mathrm{z}) \mathrm{q}=x(\mathrm{y}-\mathrm{z})$
3. (a) Find the complete integral of $p x y+p q+q y=y z$.
(b) Solve the partial differential equation $z_{x} z_{y}=z$ subject to the condition $z(s,-s)=1$
4. (a) Solve the following equation by Jacobi's Method

$$
\mathrm{Z}^{3}=\mathrm{pq} x \mathrm{y}
$$

(b) Find a solution of $z=p^{2}-q^{2}$ which passes through the curve C with the equation $4 z+x^{2}=0, y=0$
5. (a) Using Jacobi's method, find the complete integral of

$$
\mathrm{p}_{3} x_{3}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)+x_{1}+x_{2}=0
$$

(b) Find the integral surface of the equation $\mathrm{pq}=\mathrm{z}$ passing through

$$
\mathrm{C}: x_{0}=0, \mathrm{y}_{0}=0, \mathrm{z}_{0}=\mathrm{s}^{2}
$$

6. (a) State the problem of the wave equation in the case of vibrations of a string of finite length and solve it using the method of separation of variables. Consider that both ends are fixed and initial displacement distribution is $\mathrm{f}(x)$ and initial velocity distribution is $\mathrm{g}(x)$.
(b) State and solve the heat conduction problem for a finite rod of length l with initial temperature distribution in the rod at time $\mathrm{t}=0$ given by $\mathrm{f}(x)$. Use the method of separation of variables.
7. (a) If u_{1} and u_{2} are solutions of Neumann's BVP then show that, $u_{1}-u_{2}=$ constant. Also show that the solution of Neumann's problem is unique upto the addition of a constant.
(b) Solve $\mathrm{u}_{\mathrm{tt}}-\mathrm{c}^{2} \mathrm{u}_{x x}=\mathrm{F}(x, \mathrm{t}), 0<\mathrm{x}<l$, t >0,

$$
\begin{aligned}
& \mathrm{u}(x, 0)=\mathrm{f}(x), 0<x<l \\
& \mathrm{u}_{\mathrm{t}}(x, 0)=\mathrm{g}(x), 0<x<l, \\
& \mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{t}>0,
\end{aligned}
$$

by making use of Duhamel's principle.
8. (a) Solve the following partial differential equation using Fourier Transform

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{tt}}(x, \mathrm{t})=\mathrm{c}^{2} \mathrm{u}_{x x}(x, \mathrm{t}), x \in(-\infty, \infty), \mathrm{t}>0 \\
& \mathrm{u}(x, 0)=\mathrm{f}(x), x \in(-\infty, \infty) \\
& \mathrm{u}_{\mathrm{t}}(x, 0)=\mathrm{g}(x) x \in(-\infty, \infty)
\end{aligned}
$$

with $\mathrm{u}(x, \mathrm{t}), \mathrm{u}_{x}(x, \mathrm{t}) \rightarrow 0$ as $x \rightarrow \pm \infty, \mathrm{t}>0$
(b) Solve the Initial Boundary Value Problem :

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{tt}}=\mathrm{u}_{x x}, x \in(0,1), \mathrm{t}>0 \\
& \mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{t}>0 \\
& \mathrm{u}(x, 0)=x(1-x), \\
& \mathrm{u}_{\mathrm{t}}(x, 0)=0, x \in[0,1]
\end{aligned}
$$

PART - B

9. Choose an appropriate option for the given questions to write the correct answers. (Each carries one mark)
(1) Let $\mathrm{u}(x, \mathrm{t})$ be the solution of the initial value problem
$\mathrm{u}_{\mathrm{tt}}-\mathrm{u}_{x x}=0, \mathrm{u}(x, 0)=x^{3}, \mathrm{u}_{\mathrm{t}}(x, 0)=\sin x$. Then, $\mathrm{u}(\pi, \pi)$ is
(a) π^{3}
(b) $4 \pi^{3}$
(c) 0
(d) 4
(2) Let $\mathrm{f}(x, \mathrm{y}, \mathrm{z})=\mathrm{c}$ be a one-parameter family of surfaces then choose the necessary condition which is required to form a family of equipotential surfaces
(a) $\frac{\nabla^{2} \mathrm{f}}{(\nabla \mathrm{f})^{2}}=-\frac{\mathrm{F}^{\prime \prime}(\mathrm{f})}{\mathrm{F}^{\prime}(\mathrm{f})}$
(b) $\frac{\nabla^{2} \mathrm{f}}{(\nabla \mathrm{f})^{2}}=\frac{\mathrm{F}^{\prime \prime}(\mathrm{f})}{\mathrm{F}^{\prime}(\mathrm{f})}$
(c) $\frac{\nabla^{2} \mathrm{f}}{(\nabla \mathrm{f})^{2}}=2 \frac{\mathrm{~F}^{\prime \prime}(\mathrm{f})}{\mathrm{F}^{\prime}(\mathrm{f})}$
(d) None of these
(3) An artificial node is added for
(a) Dirichlet boundary conditions
(b) Neumann boundary conditions
(c) Forced boundary conditions
(d) Discrete boundary conditions
(4) A two parameter family of solutions is called a complete integral of $\mathrm{f}(x, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{q})=0$, if in the region considered, the rank of the matrix

$$
\mathrm{M}=\left(\begin{array}{lll}
\mathrm{F}_{\mathrm{a}} & \mathrm{~F}_{x \mathrm{a}} & \mathrm{~F}_{\mathrm{ya}} \\
\mathrm{~F}_{\mathrm{b}} & \mathrm{~F}_{x \mathrm{~b}} & \mathrm{~F}_{\mathrm{yb}}
\end{array}\right) \text { is }
$$

(a) 0
(b) 1
(c) 2
(d) 3
(5) The position of the rod coincides with x-axis, and the rod is \qquad .
(a) Non-Homogeneous
(b) Homogeneous
(c) Non-Linear
(d) Semi-Linear
(6) Which of the following equation is elliptic?
(a) $\mathrm{u}_{x x}-\mathrm{u}_{\mathrm{yy}}-3 \mathrm{u}_{x}+3 \mathrm{u}_{\mathrm{y}}=\mathrm{e}^{2 x+\mathrm{y}}$
(b) $3 \mathrm{u}_{x x}+2 \mathrm{u}_{x y}+5 \mathrm{u}_{\mathrm{yy}}+x \mathrm{u}_{\mathrm{y}}=0$
(c) $\mathrm{u}_{x x}-2 \mathrm{u}_{x \mathrm{y}}+\mathrm{u}_{\mathrm{yy}}=0$
(d) $\mathrm{u}_{x x}-2 \mathrm{u}_{x y}=0$, for $x>0, \mathrm{y}>0$
(7) For the wave equation the Boundary condition $u(0, t)=0$ and $u_{x}(0, t)=0$ specifies the type
(a) Dirichlet
(b) Neumann
(c) Robin
(d) Churchill
(8) Which of the following describes the physical phenomenon that is the heat equation?
(a) $\mathrm{u}_{\mathrm{tt}}-\mathrm{c}^{2}\left(\mathrm{u}_{x x}+\mathrm{u}_{\mathrm{yy}}+\mathrm{u}_{\mathrm{zz}}\right)=0$
(b) $\quad \nabla^{2} \mathrm{u}=\mathrm{f}(x, \mathrm{y}, \mathrm{z})$
(c) $\mathrm{u}_{\mathrm{t}}=\mathrm{K}\left(\mathrm{u}_{x x}+\mathrm{u}_{\mathrm{yy}}+\mathrm{u}_{\mathrm{zz}}\right)$
(d) $u_{t t}+c^{2} \nabla^{4} u=0$

