3/22

0706E444

M.Sc Sem.-2 Examination

P - 407

Medical Physics

June 2022

[Max. Marks: 50

Time: 2-00 Hours]

Instructions: All questions in **Section** – I carry equal marks. Attempt any Three questions in Section - I.

Questions in Section – II is COMPULSORY.

Section - I

Q-I	A B	a seeme themae i offin otalistical model.	7
O II		orbital orbital orbit interactions.	7
Q-II	А. В.	and the final fleethood.	7 7
Q-III	A.	What is a molecule? List various types of molecules and discuss each one briefly.	
	В.	Discuss dynamic linear and symmetric top approach of molecules.	7
Q-IV	A.	Discuss asymmetric top and spherical top approach of molecules.	7
	В.	Discuss an energy level spectra of non-rigid rotator.	7
Q-V	A.	Discuss vibrational energy of diatomic molecules.	7
	В.	Draw a potential energy diagram of a vibrating diatomic molecule and discuss the Morse potential energy diagram.	7
Q-VI	A.	Discuss theory of diatomic molecules as simple harmonic oscillator. Show that $V(x) = \frac{1}{2} kx^2$	7

P.T.

- B. Discuss the potential energy function of a diatomic molecules and show that $\bar{v} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$
- Q-VII A. Give brief introduction about Raman spectroscopy. Discuss principal and 7 instrumentation about Raman spectroscopy.
 - B. Give brief introduction about photo spectroscopy. Discuss principal and 7 instrumentation about X-ray photo electron spectroscopy (XPS).
- Q-VIII A. What is NMR spectroscopy? Discuss principal and instrumentation about 7 NMR spectroscopy. List two applications of NMR.
 - B. What do you understand by spectroscopy? Discuss principal of UV-VIS 7 spectroscopy. List two applications of UV-VIS spectroscopy.

Section - II

Q-IX MCQs

- 1. Which of the subsequent quantum numbers regulates the spatial orientation of an atomic orbital?
 - A. Magnetic quantum number
- B. Spin quantum number
- C. Azimuthal quantum number
- D. Principal quantum number
- 2. Quantum Numbers are explanations of
 - A. Heisenberg's Uncertainty Principle
- B. Schrodinger's Wave Equation
- C. Einstein's mass energy relation
- D. Hamiltonian Operator
- 3. In simple harmonic motion (SHM) the restoring force is _____to displacement of the body.
 - A. Inversely proportional
- B. Proportional

	C.	Independent	D.	Not Proportional
4.		the centre of gravity of molecule ssesss	chan	ge during motion , the molecule
	A.	Rotation	В.	Electronic energy
	C.	Translational energy	D.	Vibrational energy
5.	Wl	nen O_2 converts to O_2^{-} , the electron go	es to _	of the orbitals.
	A.	π	B.	σ
	C.	π^*	D.	σ^*
6.	Sta	bility of molecule increase as energy_	•	
	A.	Increases	В.	Does not change
	C.	Decreases	D.	First increase then decrease
7.	In N	Mossbauer spectrometer, source emits_	ra	adiation
	A.	x-ray	B.	α
	C.	β	D.	γ
	The	Mossbauer effect is based on	·	
	A.	Spin effect	В.	Doppler effect
	C.	Meissner efffect	D.	Bear-Lambert law

---XXX----

8.

