2904N180

Candidate's Seat No :____

BSc Sem.-4 Examination CC 204 Statistics

Time: 2-00 Hours]

April 2022 [Max. Marks: 50

All the question in section I carry equal marks. Attempt any three questions from section I. Section II is compulsory.

Section-I

- 1. (A) Define Geometric distribution. Obtain MGF of geometric distribution. Hence determine mean and variance.
 - (B) State and prove the memoryless property for geometric distribution.
- 2. (A) Define negative binomial distribution. Derive the CGF of negative binomial distribution. Hence determine find first four cumulants.
 - (B) Prove that Poisson distribution is a limiting case of Negative Binomial distribution.
- 3. (A) Define Cauchy distribution. Derive the distribution function and hence determine the median of Cauchy distribution.
 - (B) Define Laplace distribution. Derive the distribution function of Laplace distribution.
- 4. (A) Define Log-normal distribution. Derive quartiles of log-normal distribution.
 - (B) Define two parameter Weibull distribution. Derive the distribution function and hence determine median of Weibull distribution.
- 5. (A) Define a normal distribution. Derive the moment generating function of normal distribution. Hence determine its mean and variance.
 - (B) Let $X \sim N(\mu, \sigma^2)$. Show that all the odd order central moments of X are zero. Also find the expression for even order central moments.
- 6. (A) Let $(X,Y) \sim BVND(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Obtain the conditional distribution of Y given Y = x.
 - (B) Let $(X, Y) \sim BVND(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Show that X and Y are independent if and only if $\rho = 0$.
- 7. (A) State and prove Bernoulli's Law of Large numbers.
 - (B) State and prove the Weak Law of Large Numbers.
- 8. (A) Define characteristics function. Derive the characteristics function of geometric distribution.
 - (B) State and prove the Lindberg-Levy form of central limit theorem.

Section-II

Page 1 of 2 Please go on to the next page... $\rho_{T_{1}}$

B.Sc. Semester IV (Statistics STA-204) Semester Examination

9. Select correct answer:

- (i) If $X \sim NB(r, p)$, the mean and variance of X are A. rp and rpq B. rq/p and rq/p^2 C. rp/q and rp/q^2 D. none of these.
- (ii) Let X_1 and X_2 be two independent and identically distributed random variables with geometric distribution Geo(p), the conditional distribution of X_1 given $X_1 + X_2$ is
 - A. geometric B. negative binomial C. uniform D. binomial.
- (iii) The mean and variance does not exists for
 - A. Laplace distribution B. Cauchy distribution C. Weibull distribution
 - D. Hypergeometric distribution.
- (iv) The graph of Cauchy distribution is
 - A. Symmetric B. Positively skewed C. Negatively skewed D. Cannot say surely.
- (v) Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ be independent random variables. The distribution of X/Y is
 - A. Standard Laplace B. Standard Cauchy C. Weibull D. Exponential.
- (vi) Let X and Y be two independent and identically distributed exponential variates with parameter θ . The distribution of X Y is
 - A. Cauchy B. Weibull C. Exponential D. Laplace.
- (vii) If $Y \sim N(\mu, \sigma^2)$ distribution, then the distribution of $X = e^Y$ is
 - A. Normal B. Cauchy C. Log-normal D. Laplace.
- (viii) The characteristic function of B(n, p) is
 - A. $(q + pe^{it})^n$ B. $(q pe^{it})^n$ C. $(q + pe^{-it})^n$ D. $(p + qe^{it})^n$.