Time: 2-00 Hours]

2704N105

M.Sc Integ in App Geo Sem-4 Examination AGLFC-207

Metamorphic Petrology April 2022

[Max. Marks: 50

Instructions: All questions in **Section**—I carry equal marks.

Attempt any **Three** questions in **Section-I.**Questions I in **Section-II** is **COMPULSORY.**

	Questions I in Section-II is COMPULSORY.							
	Section-i							
Q-I	A Explain in detail the concept of protolith and metamorphism							
-	B Explain the terms foliation, banding schistosity lineation	7						
	plygmatic folds, A-type, S-type, I-type granites, pluton, hydrothermal	,						
	alteration, exhumation, metamorphic aureole, granofels, and hornfels							
L	normeis							
0.11	Q-II A Providing examples explain the terms paleosome, neosome,							
Q-II	red cocratic, melanocratic, mesocratic metatevites distovites							
	xeriolitis, <u>scrilleren effect. Open system and closed system. Also</u>							
	explain the difference between granites and granitoids							
	b Explain the concepts of metamorphism and metasomatism and	7						
	state the major differences in both the process							
	A Explain the following 2 processes in detail							
Q-III	Hydrothermal alteration	7						
	2) Skarn formation and name any 4 types of migmatites	Ì						
	b Stating the definition of metamorphosis, write short notes on	7						
	pyrometamorphism, combustion, dislocation and cataclastic							
	metamorphism	1						
	A Defining the grades of metamorphism explain in detail giving							
Q-JV	examples how grade of metamorphism affects the rock formation							
	process	i						
	B Explain in detail the relation of metamorphism with plate tectonics	7						
<u> </u>	and deformation processes	'						
	A Fynlain in detail with examples little at 1							
Q-V	A Explain in detail with examples lithostatic and deviatoric stress	7						
	B Explain in detail all the controlling factors on the size and shape of the contact aureole	7						
	the contact aureole							
0.14	A Explain mineralogical phase rule, phase diagram and Gibbs free							
Q-VI	Chergy	7						
	B State and explain the three criteria's employed in the classification	7						
-	of metamorphic rocks	′						
	A Rasad on the minute							
,Q-VII	A Based on the mineral assemblage explain the terms describing	7						
	the general bulk chemical composition of metamorphic rocks B Define metamorphic facies and explain all its types in detail							
· · · · · · · · · · · · · · · · · · ·	- Ideles and explain all its types in detail	7						
Q-VIII	A Define metamorphic differentiation and explain its various							
Q-VIII	mechanisms	7						
	B Explain in detail the concept of index minerals	7						

Nº 105.2

Section II

	Q	IX	MCQs			ocion n				8	
13				1	.1						
1)			minerai form	s deepest ir	a the eart	th, where	pressures car	read over	four kild	bars.	
	a)	Andal	usite								
	b)	Kyani	te								
	c)	Perthi									
	d)	Sillim	anite								
2)	Ph	yllite is	rich in tiny sł	neets of	mi	ica					
	a)	Musco	vite								
	b)	Biotite									
	c)	Sericit	e								
	d)	none									
3.	Fermo	w zeolite lecular s Cation	sieves	lily dehydra	ated and	rehydrate	ed, and are use	ed as	e	xchange	ers and
	b)	Anion									
	c)	Any									
	d)	None									
4	An	atectic	ar	e typically a	associate	ed with lo	cal, in situ pa	rtial decom	nression	melting	r of
	roc	k trigger	ed by rapid,	tectonic un	roofing		, bitta pu	4000111	pression	iniciting	5 01
		granito			J						
	b)	schists									
	c)	granofe	els								
	d)	granite	S								
5			te is an	rock							
	a)	mafic	~								
	b)	ultrama	itic								
	c)	felsic									
	d)	ultrabas	sic								
5	dina	ection.	cleavage occ	urs when fi	ine clay f	lakes gro	w in a plane j	perpendicul	ar to the	compre	ession
a l		schistos									
	a) b)	platy	se								
	c)	gneisso	co.								
	d)	slaty	se								
7	Cha	rnockite	s are found in	n high-grad	łe metam	ornhie					
	a)	Eclogite	e facies		ic metam	orpine_					
	_	granulit									
(enschist facie	es							
			ist facies								
;	The	concept	of"	" was ii	ntroduce	d into the	world of me	tamorphic g	geology	by E. Ba	ailev
	ın I	962						F &	,01	- , = . 50	
		Eclogite									
			hist facies								
			ist facies								
C	d)	Metamo	orphic facies								

 $\leftarrow \times \sim$