\qquad

AH-130

April-2022

B.Sc., Sem.-VI

307 : Physics

(Mathematical Physics, Classical Mechanics and Quantum Mechanics)
Time: 2 Hours]
[Max. Marks : 50
સૂચનાઓ : (1) વિભાગ-Iના બધા પ્રશ્નોના ગુણ સ૨ખા છે.
(2) વિભાગ-Iમાંથી ગમે તે ત્રણ પ્રશ્નોના જવાબ લખો.
(3) વિભાગ-IIમાં પ્રથમ પ્રશ્ન ફ૨જીયાત છે.
વિભાગ - I

1. (A) સાબિત કરો કे $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(x)\right)=x^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(x)$.
(B) સાબિત કરો કे (i) $x \mathrm{p}_{l}^{\prime}(x)-l \mathrm{P}_{l}(x)=\mathrm{p}_{l-1}^{\prime}(x)$.

$$
\text { (ii) } x \mathrm{p}_{l-1}^{\prime}(x)+l \mathrm{P}_{l-1}(x)=\mathrm{p}_{l}^{\prime}(x) \text {. }
$$

2. (A) સાબિત કરો કे (i) $\mathrm{N}_{\mathrm{v}-1}(x)+\mathrm{N}_{\mathrm{v}+1}(x)=\frac{2 v}{x} \mathrm{~N}_{\mathrm{v}}(x)$
(ii) $\mathrm{N}_{\mathrm{v}-1}(x)-\mathrm{N}_{\mathrm{v}+1}(x)=2 \mathrm{~N}_{\mathrm{v}}^{\prime}(x)$
(B) લીજેન્દ્ર બહુપદીઓ નીચેનો લંબછેદકીય સંબંધ સંતોષે છે, તેમ બતાવો :

$$
\int_{-l}^{+l} \mathrm{p}_{\mathrm{m}}(x) \mathrm{p}_{\mathrm{n}}(x) \mathrm{d} x=\frac{2}{2 \mathrm{n}+1} \delta_{\mathrm{mn}}
$$

3. (A) જીઓડૈસીસ સમજાવો. ગોલીય સપાટીની જીઓડેસીસ ગુરૂ વર્તુળો છે. તેમ દર્શાવો.
(B) ગતિશીલ આધાર સાથે સ૨ળ આવર્તક દોલકના તંત્ર માટેનો હેમિલ્ટોનીયત મેળવો.
4. (A) Calculus of variationની ટેકનીકના ઉપયોગથી ઓઈલરની ગતિનું સમીકરણ મેળવો.
(B) वિદ્યુત-યાંત્રિક સામ્યતાના આધારે શ્રેણી અને સમાન્ત૨ L-C-R વિદ્યુત પરિપથ માટે લાગ્રાન્જીયન તારવો.
5. (A) ત્રિપારિમાણિક સ્થિતિમાન કૂપના અંદ૨ના વિસ્તારમાં ત્રિજ્યાવર્તી શ્રોડિંજ૨ સમીક૨ણનો ઉિકેલ મેળવો.
(B) ત્રિજ્યયાવર્તી શ્રોડિંજ૨ સમીક૨ણનો ઉિપયોગ કરીને વિસમદિકધર્મ દોલકના કોયડાનો ઉેકેલ મેળવો.
6. (A) હાઈડ્રોજન અણુ માટે નીચેના વિકલ સમીકરણનો ઉપયોગ કરી

$$
\begin{align*}
& \rho \frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{~d} \rho^{2}}+(2 l+2-\rho) \frac{\mathrm{dL}}{\mathrm{~d} \mathrm{\rho}}+(\lambda-l-1) \mathrm{L}=0 \\
& \text { सાબિત કરો 子े } \mathrm{E}_{\mathrm{n}}=-\frac{\omega \mathrm{Z}^{2} \mathrm{e}^{4}}{2 \hbar^{2} \mathrm{n}^{2}} \text { જ्यया } \mathrm{n}=1,2,3 \ldots \tag{7}
\end{align*}
$$

(B) હાઈડ્રોજન પ૨માણુ માટે ત્રિજ્યાવર્તી શ્રોડિંજ૨ સમીકરણ લખો. તેને પેરાબોલિક યામમાં વિભાજીત કरो.
7. (A) હિલબર્ટ અવકાશ પ૨ ટૂંકનોંધ લખો.
(B) સાબિત કરો કे $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq\left\langle\psi_{2} \mid \psi_{1}\right\rangle$ परंતु

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left\langle\psi_{2}\right| \psi_{1}>^{*}
$$

8. (A) સમય વેગમાનની શ્રો|િંજ૨ નિફૂપણની ચર્ચા કરો.
(B) સાબિત કરો કે પ્રોજેકશન કારકનો સરવાળો એક (1) હોય છે.
વિભાગ - II
9. ટૂંકમાં જવાબ આપો. ($\mathbf{1 6}$ માંથી કોઈૅપણ $\mathbf{8}$ ના જવાબ)
(1) બેસલે વિધેય માટે $\mathrm{J}_{+3 / 2}(x)$ નું મૂલ્ય લબ.
(2) ગોલીય ન્યૂમેન વિધેય લખો.
(3) લીજેન્દ્ર બહુપદી $\mathrm{P}_{0}(x)$ નું મૂલ્ય લખો.
(4) जેસેલ વિધેયનો ગુણોત્ત૨ $\frac{\mathrm{J}_{1 / 2}(x)}{\mathrm{J}_{-1 / 2}(x)}$ શું છે ?
(5) ઓઈ'લ૨ પ્રમેયનુંકથન આપો.
(6) L-C-R શ્રેણી વિદ્યુત પરિપથ માટે લાગ્રાન્જ્યન લખો.
(7) ફેઝ અવકાશ એટલે શું?
(8) ગામા વિધેયને વ્યાખ્યાયિત કરો.
(9) હાઈક્રોજન પરમાણુુી સ્થિતિ ઊર્જાનું સમીકરણ લખો.
(10) ગોલીય સંમિતિમાં પોટેન્શીય ઊર્જા પ૨ આધાર ૨ાખે છે.
(11) હાઈડ્રોજન પ૨માણુનું Ψ_{100} તરંગ વિધેયનું મૂલ્ય લખો.
(12) સમદિકધર્મી દોલકની શૂન્યક્યમની ઊર્જા લખો.
(13) પ્રોજેકશન કારકની વ્યાખ્યા આપો.
(14) એકમ કારકની વ્યાખ્યા આપો.
(15) $(\mathrm{AB})^{+}=$ \qquad ?
(16) $\left(\mathrm{A}^{+}\right)^{+}=$ \qquad ?
\qquad

AH-130

April-2022

B.Sc., Sem.-VI

307 : Physics

(Mathematical Physics, Classical Mechanics and Quantum Mechanics)

Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) All questions in Section - I carry equal marks.
(2) Attempt any three questions in Section - I.
(3) Question No. 1 in Section - II is Compulsory.

SECTION - I

1. (A) Prove that $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(x)\right)=x^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(x)$.
(B) Prove that (i) $x \mathrm{p}_{l}^{\prime}(x)-l \mathrm{P}_{l}(x)=\mathrm{p}_{l-1}^{\prime}(x)$.
(ii) $x \mathrm{p}_{l-1}^{\prime}(x)+l \mathrm{P}_{l-1}(x)=\mathrm{p}_{l}^{\prime}(x)$.
2. (A) Prove that (i) $\mathrm{N}_{\mathrm{v}-1}(x)+\mathrm{N}_{\mathrm{v}+1}(x)=\frac{2 \mathrm{v}}{x} \mathrm{~N}_{\mathrm{v}}(x)$
(ii) $\mathrm{N}_{\mathrm{v}-1}(x)-\mathrm{N}_{\mathrm{v}+1}(x)=2 \mathrm{~N}_{\mathrm{v}}^{\prime}(x)$
(B) Prove that Legendre polynomial satisfies the following orthogonality condition.

$$
\int_{-l}^{+l} \mathrm{p}_{\mathrm{m}}(x) \mathrm{p}_{\mathrm{n}}(x) \mathrm{d} x=\frac{2}{2 \mathrm{n}+1} \delta_{\mathrm{mn}}
$$

3. (A) Explain Geodesis. Show that Geodesis of spherical surface are great circles.
(B) Obtain Hamilton's system for simple pendulum with moving support.
4. (A) Obtain Euler's equation of motion using technique of calculus of variation.
(B) Obtain Lagragian for a series L-C-R and parallel L-C-R electric circuit on the basis of electro-mechanical analogies.
5. (A) Find the solution of Schrodinger radial equation inside of a three dimensional square well potential.7
(B) Using radial equation, solve the problem of anisotropic oscillator. 7
6. (A) Using the equation $\rho \frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{~d} \rho^{2}}+(2 l+2-\rho) \frac{\mathrm{dL}}{\mathrm{d} \rho}+(\lambda-l-1) \mathrm{L}=0$. Obtain energy

Eigen values $E_{n}=-\frac{\omega z^{2} e^{4}}{2 \hbar^{2} n^{2}}$ where $n=1,2,3 \ldots$ for H-atom.
(B) Write the radial Schrodinger equation for H atom. Separate this equation in Parabolic co-ordinate.
7. (A) Write a short note on Hilbert space.
(B) Prove that $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq<\psi_{2}\left|\psi_{1}\right\rangle$ but

$$
\begin{equation*}
<\psi_{1}\left|\psi_{2}>=<\psi_{2}\right| \psi_{1}>^{*} \tag{7}
\end{equation*}
$$

8. (A) Explain Schrodinger representation for a liner momentum.
(B) Prove that sum of projection operator is one (1).

SECTION - II

9. Answer in short (Any $\mathbf{8}$ out of $\mathbf{1 6}$).
(1) Write down value of $\mathrm{J}_{+3 / 2}(x)$ for Bessel's function.
(2) Write spherical Neumann function.
(3) Write down value of $\mathrm{P}_{0}(x)$ for Legendre polynomial.
(4) What is ratio of $\frac{\mathrm{J}_{1 / 2}(x)}{\mathrm{J}_{-1 / 2}(x)}$ for Bessel's function.
(5) State Euler theorem.
(6) Write down Lagrangian for $\mathrm{L}-\mathrm{C}-\mathrm{R}$ Series circuit.
(7) What is phase space ?
(8) Define Gama function.
(9) Write down potential energy equation for H -atom.
(10) In a spherically symmetric potential energy depends on \qquad .
(11) Write down the value of wave function of H -atom ψ_{100}.
(12) What is zero point energy of isotropic oscillator?
(13) Define projection operator.
(14) Define unitary operator.
(15) $(\mathrm{AB})^{+}=$ \qquad ?
(16) $\left(\mathrm{A}^{+}\right)^{+}=$ \qquad ?
