\qquad

AH-131

April-2022

B.Sc., Sem.-VI

307 : Mathematics

(Abstract Algebra - II)

Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) Attempt any three questions in Section - I.
(2) Section - II is a compulsory section of short questions.
(3) Notations are usual everywhere.
(4) The right hand side figures indicate marks of the sub. question.

SECTION - I

Attempt any three of the following questions :

1. (a) Prove that the set $Z[i]=\{a+i b / a, b \in Z\}$ forms a commutative ring under usual addition and multiplication of complex numbers.
(b) If R is ring satisfying $(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all $a, b \in R$, then prove that the ring R is a commutative ring.
2. (a) Define an integral domain and prove that every field is an integral domain. Also justify your answer whether the converse is true or false.7
(b) If R is a ring satisfying $\mathrm{a}^{2}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R}$, then prove that R is a commutative ring.7
3. (a) Define a subring of a ring R.

If U is a non-empty subset of a ring R satisfying
(i) $a-b \in U$ for all $a, b \in U$ and
(ii) $a \cdot b \in U$ for all $a, b \in U$ then prove that U is a subring of R.
(b) Show that the set $U=\left\{\frac{\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right]}{a, b, c \in Z}\right\}$ of triangular matrices is a subring of the ring $\left(\mathrm{M}_{2}(\mathrm{Z}),+, \bullet\right)$.
4. (a) If R is a commutative ring with unity which has no proper ideal, then prove that R is a field.
(b) Define a ring Homomorphism. If $\Phi:(\mathrm{R},+, \bullet) \rightarrow\left(\mathrm{R}^{\prime}, \oplus, \odot\right)$ is a ring homomorphism and I is an ideal of R , then prove that $\Phi(\mathrm{I})$ is an ideal of $\Phi(\mathrm{R})$.
5. (a) For non-zero polynomials $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$ prove that $[\mathrm{f} \cdot \mathrm{g}]=[\mathrm{f}]+[\mathrm{g}]$.
(b) Obtain the quotient $\mathrm{q}(x)$ and the remainder $\mathrm{r}(x)$ on dividing $\mathrm{f}(x)=x^{4}+2 x^{3}-x^{2}+3$ by $\mathrm{g}(x)=x^{2}-x+1$ in $\mathrm{Z}_{5}[x]$.
6. (a) Suppose $\mathrm{f}(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\mathrm{a}_{2} x^{2}+\ldots+\mathrm{a}_{\mathrm{n}} x^{\mathrm{n}} \in \mathrm{Z}[x]$ and suppose $\frac{\mathrm{p}}{\mathrm{q}}$ in the simplest form (i.e. $(\mathrm{p}, \mathrm{q})=1$) is a solution of the equation $\mathrm{f}(x)=0$. Then prove that $\mathrm{p} \mid \mathrm{a}_{0}$ and $q \mid a_{n}$.
(b) State the Eisenstein's criterion and prove that whenever p is a prime, then the polynomial $\mathrm{f}(x)=x^{\mathrm{p}-1}+x^{\mathrm{p}-2}+\ldots+x+1$ is irreducible over Q .
7. (a) Show that $\mathrm{Q}[\mathrm{i}]=\left\{\frac{\mathrm{a}+\mathrm{bi}}{\mathrm{a}, \mathrm{b} \in \mathrm{Q}\}}\right\}$ is a subfield of the field C of complex numbers.
(b) Show that the polynomial $\mathrm{f}(x)=x^{3}+x^{2}+1$ is irreducible over Z_{2} and $\frac{\mathrm{Z}_{2}[x]}{\langle\mathrm{f}(x)\rangle}$ is a field with eight elements.
8. (a) If I is a maximal ideal of a commutative ring R with unity, then prove that R / I is a field.
(b) Show that $\mathrm{I}=<x^{3}-3 x-1>$ is a maximal ideal in $\mathrm{Z}_{3}[x]$.

SECTION - II

9. Attempt any four of the followings in short :
(a) Define the terms: (i) A ring (ii) A commutative ring.
(b) Give an example of an infinite non-commutative ring and a finite commutative ring.
(c) Give an example of a left ideal of a ring which is not an ideal of the ring.
(d) Define a polynomial in integral domain D and the degree of a non-zero polynomial in D.
(e) Define a primitive polynomial and a reducible polynomial.
(f) Define maximal and prime ideals of a commutative ring R with unity.
