Seat No. :

\qquad

AI-123

April-2022
B.Sc., Sem.-VI

308 : Mathematics

(Analysis - II)
Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) All Questions in Section - I carry equal marks.
(2) Attempt any THREE questions in Section - I.
(3) Question - $\mathbf{9}$ in Section - II is COMPULSORY

SECTION - I

1. (a) State and prove First Fundamental theorem of Integral Calculus.
(b) Let $\mathrm{f}(x)=3 x^{2} / 5$ on $[0,1]$ for $\mathrm{n} \in \mathrm{NP}_{\mathrm{n}}=\left\{0, \frac{1}{\mathrm{n}}, \frac{2}{\mathrm{n}}, \frac{3}{\mathrm{n}}, \frac{4}{\mathrm{n}} \ldots \frac{\mathrm{n}-1}{\mathrm{n}}, 1\right\}$ then find $\lim _{n \rightarrow \infty} U\left[f ; P_{n}\right]$ and $\lim _{n \rightarrow \infty} L\left[f ; P_{n}\right]$.
2. (a) If f and g are continuous on $[a, b]$ and if $g(t) \geq 0$ for $a \leq t \leq b$ then prove that there exists $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{g}(x) \mathrm{d} x=\mathrm{f}(\mathrm{c}) \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(x) \mathrm{d} x$.
(b) Prove that every continuous function on $[\mathrm{a}, \mathrm{b}]$ is Riemann integrable.
3. (a) Prove that the series $\sum \frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots$ converges to the value e, which is an irrational number.
(b) Prove that if $\mathrm{p}>1$, the series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{p}}}$ converges and if $\mathrm{p} \leq 1$, the series diverges.
4. (a) State and prove Cauchy's Root Test.
(b) Test for convergence :
(i) $\sum_{n=1}^{\infty} \frac{n^{1 / 2}}{3 n^{3 / 2}+1}$
(ii) $\sum_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{-n^{2}}$
5. (a) State and prove Mertens' Theorem.
(b) Find the set of convergence (interval of convergence) and radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{n^{2}(x-2)^{n}}{\left(n^{2}+2\right) 2^{n}}$.

OR

6. (a) State and prove Leibnitz Alternating Series test.
(b) For the following, determine whether the series converges absolutely, converges conditionally, or diverges :
(i) $\quad \sum \frac{(-1)^{n}}{\left(3 n^{2}+4\right)}$
(ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\mathrm{n}^{1 / 5}}$
7. (a) State and prove binomial theorem.
(b) Write down Taylor's formula with Lagrange form of remainder for $\mathrm{f}(x)=\log (1+x)$ about $\mathrm{a}=2$ and $\mathrm{n}=4$.
8. (a) Let f be a real valued function on $[\mathrm{a}, \mathrm{a}+\mathrm{h}]$ and $\mathrm{f}^{\mathrm{n}+1}(x)$ is continuous on $[\mathrm{a}, \mathrm{a}+\mathrm{h}]$. Then prove that
$\mathrm{f}(x)=\mathrm{f}(\mathrm{a})+\frac{\mathrm{f}^{\prime}(\mathrm{a})}{1!}(x-\mathrm{a})+\frac{\mathrm{f}^{\prime \prime}(\mathrm{a})}{2!}(x-\mathrm{a})^{2}+\ldots+\frac{\mathrm{f}^{(\mathrm{n})}(\mathrm{a})}{\mathrm{n}!}(x-\mathrm{a})^{\mathrm{n}}+\mathrm{R}_{\mathrm{n}+1}(x)$
for $x \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]$
Where $\mathrm{R}_{\mathrm{n}+1}(x)=\frac{1}{\mathrm{n}!} \int_{\mathrm{a}}^{x}(x-\mathrm{t})^{\mathrm{n}} \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$.
(b) Find the power series solution of $y^{\prime}-y+1=0$ with the condition $y(0)=2$.

SECTION - II

9. Attempt any four short questions :
(1) For $\mathrm{f}(x)=\cos x$ on $[0, \pi]$. Find $\mathrm{U}[\mathrm{f}, \mathrm{P}]$ for the partition $\mathrm{P}=\{0, \pi / 2, \pi\}$
(2) Test for convergence : $\int_{2}^{\infty} \frac{1}{\sqrt{x^{2}-1}} \mathrm{~d} x$
(3) Give an example of divergent series $\Sigma \mathrm{a}_{\mathrm{n}}$ for which $\Sigma\left(\mathrm{a}_{\mathrm{n}}\right)^{2}$ convergent.
(4) Find limit superior and limit inferior of the sequence :

$$
\left((-1)^{\mathrm{n}}\left(1+\frac{1}{\mathrm{n}}\right)\right)
$$

(5) Write Maclaurin series expansion of $\sin x$
(6) Give an example of the absolute convergent series.

