Seat No. : \qquad

AI-126

April-2022
B.Sc., Sem.-VI

CC-308 : Chemistry (Inorganic)
Time : 2 Hours]
[Max. Marks : 50

વિભાગ-I

સૂચના : નીચેનામાંથી કોઈૅપણ ત્રણ પ્રશ્નોના જવાબ લબો :

1. (A) નીચે દર્શાવેલ પદો માટે ટર્મ સંજ્ઞાઓ મેળવો :
(a) $\mathrm{Sc}^{+2}(\mathrm{Z}=21)$
(b) $\mathrm{Ti}(\mathrm{Z}=22)$
(c) $\mathrm{N}(\mathrm{Z}=7)$
(B) L-S સંયોજન પદ્ધતિ (કપલિંગ સ્કિમ) સમજાવી તેના આધારે ધરાસ્થિતિની ટર્મ સંજ્ઞા નક્કી ક૨વાના નિયમો લખો.
2. (A) નીચેના પદને અનુરૂપ અયુગ્મિત ઈ犬લકક્ટ્રોનની સંખ્યા, સ્પિન ગુણકતા, કક્ષકીય સમ-શક્તિત્વ તથા કુલ સમ-શક્તિત્વ આપો :
(a) ${ }^{3} \mathrm{~F}$
(b) ${ }^{1} \mathrm{D}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ આછો ગુલાબી રંગ ધરાવે છે. કારણ આપી સમજાવો.
3. (A) હર્મિશીયન કારકની વ્યાખ્યા આપો. સાબિત કરો કે હર્મિશીયન કા૨કના આયગન મૂલ્યો હંમેશા વાસ્તવિક હોય છે.
(B) તરંગ ફલનનું સમાનીક૨ણ એટલે શું ? નીચે દર્શાવેલ તરંગ ફલનનું સમાનીક૨ણ કરો :

$$
\psi=\mathrm{A} \sin \frac{\mathrm{n} \pi}{\mathrm{a}} x \text { જ્યுí } 0 \leq x \leq \mathrm{a}
$$

4. (A) ઘન પેટીમાં ગતિ કરતા ઈલેક્ટ્રોન માટે ડીજનરેસી અને ક્વાન્ટીકરણની ઘટના ઉદાહરણા સાથે સમજાવો.
(B) ϕ-સમીકરણ લખો અને સમજાવો. ϕ-સમીક૨ણનો ઉકેલ ચુંબકીય ક્વાન્ટમ આંક સમજવા માટે ઉિપયોગી છે. સમજાવો.
5. (A) द्वि-પ૨માણ્વિય કક્ષકોના રેચીય સંમિશ્રણ $\psi=C_{1} \phi_{1}+C_{2} \phi_{2}$ માટે સેક્યુલ૨ ડીટ૨મીનેન્ટ ઉપપજાવો.
(B) સંક૨ણા એટલે શું ? તેના પ્રકા૨ જણાવો. sp સંક૨ કક્ષકો માટે તરંગ વિધેય ઉપપજાવો.
6. (A) એલાયલ પ્રણાલી માટે સાદો હ્યુકેલનો સિદ્વાંત સમજાવો.
(B) વેરિએશન સિદ્ધાંત (variation principle) લખો અને સમજાવો. તેની અગત્યતા ચર્ચો.
7. (A) નીચે દર્શાવેલ ધાતુ કાર્બાનિલ સંયોજનોનું બંધારણા ચર્ચો :
(1) $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$
(2) $\mathrm{Cr}(\mathrm{CO})_{6}$
(3) $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
(B) સેન્ડવીચ પ્રકારના કાર્બ-ધાત્વિય સંયોજનોનું બંધારણ ચર્ચો.
8. (A) ધાતુ કાર્બોનિલ સંયોજનોના અભ્યાસમાં IR વર્ણપપટનો ઉપયોગ ચર્ચો.
(B) કાર્બ-ધાત્વિય સંયોજનોની વ્યાખ્યા આપી, બંધન પ્રમાણે તેઓનું વર્ગીકરણ કરો.

વિભાગ-II

9. નીચેના પ્રશ્નોમાંથી કોઈ゙પણ આઠ પ્રશ્નોના જવાબ ટૂંકમાં આપો :
(1) સ્પેક્ટ્રોકેમિકલ શ્રેણી લખો.
(2) ‘ટર્મ સિમ્બોલ’ની વ્યાખ્યા આપો.
(3) નીચેનામાંથી કયા સંકિર્ણના ૨ંગની તીવ્રતા સૌથી વધુ હશે ?
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$
(b) $\left[\mathrm{CuCl}_{6}\right]^{-4}$
(4) 2_{D} ટર્મ સિમ્બોલ ધરાવતા સંકિર્ણામાં અયુગ્મિત ઈલેક્ટ્રોનની સંખ્યા કેટલી હશે ?
(5) હર્મિશીયન કારકનુંકોઈ゚પણ એક ઉદાહ૨ણ આપો.
(6) હેમિલ્ટોનિઅન કારકની શું ઉપયોગિતા છે ?
(7) તરંગફલનનું સમાનીકરણ શા માટે ક૨વામાં આવે છે ?
(8) ઘન પેટીમાંના ઈલેક્ટ્રોન માટે શૂન્ય બિંદુ શક્તિ દર્શાવો.
(9) ‘કુલમ્બિક ઈீન્ટિગ્રલ’ એટલે શું ?
(10) sp^{2} સંકરણમાં બંધ કોણ કેટલો હોય છે ?
(11) એલાયલ પ્રણાલીઓના પ્રકાર જણાવો.
(12) કયા પ્રમેયનો ઉપપયોગ તરંગ ફલન સાથે સંલગ્ન નિમ્નતમ શક્તિ ગણવા માટે થાય છે ?
(13) બેક બોન્ડિગ એટલે શું ?
(14) $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ માં કેટલા બ્રીજ કાર્બોનિલ છે ?
(15) કાર્બ-ધાત્વિય સંયોજનોની વ્યાખ્યા આપો.
(16) $\mathrm{HMn}(\mathrm{CO})_{5}$ નું બંધારણ દોરો.
\qquad

AI-126
 April-2022

 B.Sc., Sem.-VI

 B.Sc., Sem.-VI
 CC-308 : Chemistry (Inorganic)

Time : 2 Hours]
[Max. Marks : 50

SECTION - I

Instruction : Answer any three of the following :

1. (A) Derive the term symbols for the following :
(a) $\mathrm{Sc}^{+2}(\mathrm{Z}=21)$
(b) $\mathrm{Ti}(\mathrm{Z}=22)$
(c) $\quad \mathrm{N}(\mathrm{Z}=7)$
(B) Explain the L-S coupling scheme. Give the rules for determining the term symbol for the ground state as per this scheme:
2. (A) Calculate unpaired electrons, spin multiplicity, orbital degeneracy and total degeneracy for the following terms.

(a) ${ }^{3} \mathrm{~F}$

(b) ${ }^{1} \mathrm{D}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ has a light pink colour. Explain giving reason.
3. (A) Define Hermitian operator. Show that eigen values of Hermitian operators are always real.
(B) What is normalization of wave function? Normalize the following wave function:

$$
\psi=\mathrm{A} \sin \frac{\mathrm{n} \pi}{\mathrm{a}} x \text { where } 0 \leq x \leq \mathrm{a}
$$

4. (A) Explain with example the degeneracy and quantization for a moving electron in a cubical box.
(B) Write and explain the ϕ-equation. The solution of ϕ-equation plays an important role for understanding magnetic quantum numbers. Explain.
5. (A) The linear combination of two atomic orbitals is $\psi=\mathrm{C}_{1} \phi_{1}+\mathrm{C}_{2} \phi_{2}$.

Derive the secular determinant for the above system..
(B) What is hybridization? Describe its types. Obtain the wave function for sp hybrid orbitals.
6. (A) Explain the simple Huckel theory for Allyl system.
(B) Write and explain the variation principle. Give its importance.
7. (A) Discuss the structures of the following metal carbonyl compounds :
(1) $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$
(2) $\mathrm{Cr}(\mathrm{CO})_{6}$
(3) $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
(B) Discuss the structure of Sandwich type of organometallic compounds.
8. (A) Discuss the use of IR spectra in the studies of metal Carbonyl compounds.
(B) Give the definition of organometallic compounds. Classify them as per the bonding mechanism.

SECTION - II

9. Answer any eight of the following questions in short :
(1) Write the spectrochemical series.
(2) Give the definition of term symbol.
(3) Which of the following complexes shows intense colour?
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$
(b) $\left.\mathrm{CuCl}_{6}\right]^{-4}$
(4) What will be the number of unpaired electrons in a complex having term symbol $2_{\text {D }}$?
(5) Give any one example of Hermitian operator.
(6) What is the application of Hemiltonian operator?
(7) Why do we normalize a wave function?
(8) Write the zero point energy for an electron in a cubical box.
(9) What is 'Coulombic integral'?
(10) Give the bond angle in sp^{2} hybrid orbitals.
(11) Write the types of Allyl systems.
(12) Which theorem is used to calculate minimum energy associated with a wave function?
(13) What is back bonding?
(14) How many bridge carbonyls are there in $\mathrm{CO}_{2}(\mathrm{CO})_{8}$?
(15) Give the definition of organometallic compounds.
(16) Draw the structure of $\mathrm{HMn}(\mathrm{CO})_{5}$.
