2303N284

M.Sc. Sem.-1 Examination 403

Medical Physics

Time: 2-00 Hours]

March 2022

[Max. Marks: 50

Instructions: All questions in **Section – I** carry equal marks. Attempt any **Three** questions in **Section – I.** Questions in **Section – II** is **COMPULSORY**.

Section - I

Q-I	A. B.	What is Bragg's law? Discuss Laue X-ray diffraction method Discuss rotating crystal X-ray diffraction method	7 7
Q-II	A.	Discuss Powder X-ray diffraction method. Write an equation for Bragg's law.	7
	B.	Give brief introduction of heat capacity of a solid and discuss Einstein's theory on heat capacity of a solid	7
Q-III	A.	Derive Fermi Dirac distribution for free electron gas. Using it obtain the equation for the Fermi energy and average kinetic energy at an absolute zero temperature.	7
	В.	State and prove Bloch theorem.	7
Q-IV	A.	The solution of Schrodinger equation for an electron in one-dimensional periodic potential leads to the condition $P\frac{\sin\alpha a}{\alpha a} + \cos\alpha a = \cos ka$	7
		Discuss the formation of energy bands on the basis of Kronig-Penney	
	В.	model. What is Hall effect? Deduce an expression for Hall coefficient of a solid having only one type of carriers.	7
Q-V	A. B.	What is hysteresis? Discuss the hysteresis in ferromagnetic materials. Discuss the classical theory of diamagnetism and derive Langevin equation.	7 7
Q-VI	A.	Explain the Meissner effect. Show that superconductor behaves like diamagnet.	7

284-2

B. Derive the London equations for the macroscopic theory of 7 superconductors and discuss how does it help in understanding super conducting state of material. What is penetration depth? Discuss theory of electronic polarizibility and optical absorption 7 Q-VII 7 B. Discuss polarization of dielectric materials and discuss dielectric constant with relevant equations. A. What do you understand by 'photovoltaics'? Discuss working function 7 O-VIII of it. Write uses and advantages of photovoltaic solar cells 7 B. Derive Clausius-Mosotti equations Section - II 8 Q-IX **MCQs** In phonon vibrations frequency of an optical branch is 1. = acoustic branch В. A. > acoustic branch independent D. C. < acoustic branch Debye temperature (θ_D) = 2. $\frac{k}{hv_m}$ D. hv_m The Hall coefficient for n-type semiconductor is A. $R_H = \frac{1}{n_e}$ B. $R_H = -\frac{1}{n_e}$ 3. A. $R_H = \frac{1}{n_e}$ C. $R_H = \frac{r}{n_e}$ D. $R_H = rn_e$ The temperature at which antiferromagnetic substance behaves as paramagnetic is 4. called Curie temperature В. A. Debye temperature Neel temperature Fermi temperature The energy spectrum of an electron moving in a periodic potential consists of 5. forbidden energy regions. A. continuous energy regions. intermediate energy regions. C. forbidden and allowed energy D.

regions.

- 6. Which statistics does a Cooper pair follow?
 - A. Maxwell-Boltzmann
- B. Fermi-Dirac

C. Bose-Einstein

- D. Any of the above.
- 7. The static electronic polarizibility is expresses as
 - A. $\frac{e}{m\omega_o}$

B. $\frac{e^2}{m\omega_o}$

C. $\frac{e}{m\omega_o^2}$

- D. $\frac{e^2}{m\omega_o^2}$
- 8. Displacement vector (D) =
 - A. $\frac{q}{A}$

B. $\frac{A}{a}$

C. qA

D. 2qA

---XXX----

