Seat No. : _____

MG-123

March-2022

M.Sc., Sem.- I

403 : Chemistry

(Physical Chemistry)

Time : 2 Hours]

[Max. Marks : 50

Instruction : Section – II is **compulsory**.

Section – I

Answer any three of the following questions : (14 marks each)

1.	(a)	State the third law of thermodynamics. Show how the absolute entropy of a substance can be determined with the help of this law.	7
	(b)	What are partial molar properties ? Explain direct method to determine the partial molar properties. Explain the effect of pressure on chemical potential.	7
2.	(a)	Discuss the Nernst's heat theorem and derive an equation giving the relation between free energy, enthalpy and heat capacity.	7
	(b)	Explain in brief a chemical affinity. Give the applications and limitations of chemical affinity.	7
3.	(a)	Discuss the collision theory of bimolecular reactions.	7
	(b)	Discuss the kinetics of diffusion control reaction in solutions.	7
4.	(a)	Discuss activated complex theory of bimolecular reactions.	7
	(b)	Explain the influence of solvent properties on rate of reactions.	7

5.	(a)	Discuss the BET theory and the Harkins and Jura method of determining the surface area of adsorbents.	7
	(b)	Give difference between physical and chemical adsorption. Adsorption of N_2 on	
		TiO ₂ was carried out at 75K. A Plot of $\frac{1}{(1-z)v}$ versus Z gives a straight line with	
		an intercept 4.0×10^{-6} mm ⁻³ and slope 1.0×10^{-3} mm ⁻³ . Calculate the volume (round off) corresponding to the monolayer coverage.	7
6.	(a)	What is surface tension ? Derive Gibbs adsorption isotherm equation.	7
	(b)	Write any one verification method on Gibb's equation. When 1×10^{-5} gm of fatty acid (M = 602.3 gm/mol) was placed on water as a surface film, a monomolecular layer of area 100 cm ² was formed on compression. Calculate the cross-sectional	
		area (in $A^{\circ 2}$) of acid molecule.	7
7.	(a)	Explain the determination of particle size of crystallite with the help of X-ray powder method.	7
	(b)	Explain the band theory of solids.	7
8.	(a)	Name the different types of imperfections in solids. Derive an equation to calculate the number of Schottky defects in solids.	7
	(b)	What is superconductivity? Explain about low temperature and high temperature superconductivity.	7
		Section – II	
9.	Answer the following question : (One mark each)		
	(1)	Why the value of ΔG at melting point of ice is zero ?	
	(2)	Pure silicon is an insulator but becomes a semiconductor on heating. Why ?	

- (3) Why a finely divided substance is more effective as an adsorbent?
- (4) Frenkel defect is not seen in pure alkali metal halides, why?
- (5) Why the rate of reaction in the remaining mixture is not affected when a portion is removed for the analysis of the product ?
- (6) What are the characteristic of free energy ?
- (7) Why adsorption is an exothermic reaction ?
- (8) Why rate of reaction always increases with temperature whether the reaction is exothermic or endothermic ?