$\qquad$

## MH-116

May-2022
Int. M.B.A., Sem.-II
Basic Mathematics
Time : 2 Hours]
[Max. Marks : 50

Instructions : (i) Non-programmable scientific calculator is allowed.
(ii) In Section-I attempt any three questions out of five questions.
(iii) In Section-II attempt any eight MCQs out of ten MCQs.

## SECTION-I

(Attempt any three questions out of five questions)

1. (A) (i) Find $\mathrm{g}[\mathrm{f}(x)]$ if $\mathrm{f}(x)=\cos x$ and $\mathrm{g}(x)=\frac{1}{x}$.
(ii) Write down the inverse of the function $\mathrm{y}=\{(x+1) /(x+2)\} ; x>-2$.
(iii) Find the domain and range of the given function $\mathrm{y}=\frac{x}{x^{2}-1}$.
(B) (i) Define the following functions and give an example of each.

Exponential function
Transcendental Function
(ii) A manufacturer is willing to produce and supply 250 units of a product at price ₹ 5 per unit and 430 units at price ₹ 8 per unit. Assuming a linear behaviour, determine the supply function.
2. (A) Evaluate the following :
(i) $\lim _{x \rightarrow 3}\left(\frac{1}{x^{2}-5 x+6}-\frac{1}{x-3}\right)$
(ii) $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-3}{x-3}$
(iii) $\lim _{x \rightarrow \propto}\left(\frac{x+9}{x+1}\right)^{x+5}$
(B) (i) If $f(y)= \begin{cases}\frac{1}{2}-\mathrm{y} & ; \\ 1 & 0 \leq \mathrm{y}<\frac{1}{2} \\ \frac{3}{2}-\mathrm{y} & ; \\ \mathrm{F}=\frac{1}{2}<\mathrm{y}<1\end{cases}$
then discuss the continuity of $\mathrm{f}(\mathrm{y})$ at $\mathrm{y}=\frac{1}{2}$.
(ii) If $f(y)=\left\{\begin{array}{cc}\frac{y^{2}-3 y+2}{y-1} ; & y \neq 1 \\ k \quad ; & y=1\end{array}\right.$
for what value of $k(k \in R), f(y)$ becomes continuous?
3. (A) Find the derivatives of the following :
(i) $\mathrm{f}(x)=\left(2 x^{2}-3 x\right)\left(x^{2}+4\right)$
(ii) $\mathrm{f}(x)=\frac{(x+3)^{3}}{2 x^{2}+3 x+4}$
(iii) $\mathrm{f}(x)=\sqrt{\tan (3 x+1)}$
(iv) $\mathrm{f}(x)=3^{x}+\log \left(\frac{1}{x}\right)$
(B) If for $\mathrm{f}(x)=\mathrm{k}_{1} x^{2}+\mathrm{k}_{2} x+12, \mathrm{f}^{\prime}(4)=15$ and $\mathrm{f}^{\prime}(2)=11$, then find the values of $\mathrm{k}_{1}$ and $\mathrm{k}_{2}$.
4. (A) If $y=e^{3 x}(a x+b)$, prove that

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0
$$

(B) (i) Find the intervals in which the function $\mathrm{f}(x)=2 x^{3}+9 x^{2}+12 x+20$ is increasing or decreasing.
(ii) Suppose the demand function of some article is $\mathrm{p}(x)=75-2 x$ and the cost function is $\mathrm{C}(x)=350+12 x+\frac{x^{2}}{4}$, find the number of units and the price at which the total profit is maximum. What is the maximum profit?
5. (A) (i) Solve the following equations by Cramer's Rule :

$$
\begin{equation*}
x+y+z=3 ; 2 x+3 y+4 z=9 ; x+2 y-4 z=-1 \tag{4}
\end{equation*}
$$

(ii) If $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & -3 \\ 5 & 1 & 6 \\ 7 & 0 & 2\end{array}\right) ; \mathrm{B}=\left(\begin{array}{ccc}4 & -1 & 5 \\ 6 & 2 & 0 \\ 5 & 1 & 3\end{array}\right)$ and $\mathrm{C}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 4 & -5 & 2 \\ 3 & 0 & 1\end{array}\right)$, find $(\mathrm{AB}-2 \mathrm{C})$.
(B) Solve the following equations by matrix inversion method:

$$
\begin{equation*}
x+y+z=4 ; 2 x-y+3 z=1 ; 3 x+2 y-z=1 \tag{6}
\end{equation*}
$$

## SECTION-II

6. Attempt any Eight MCQs out of Ten MCQs :
(1) If $\mathrm{f}(x)=x^{2}-x-1$ and $\mathrm{g}(x)=x-1$, then $\mathrm{f}[\mathrm{g}(x)]$ is
(a) $x^{2}-3 x+1$
(b) $x^{4}-2 x^{2}+x$
(c) $x^{2}-x-2$
(d) $x^{2}-2$
(2) The total cost function $\mathrm{C}(x)$ of producing $x$ items is given by
$\mathrm{C}(x)=\begin{aligned} & 1000+5 x, \text { when } 0 \leq x \leq 500 \\ & 2000+4 x, \text { when } 500<x \leq 2000\end{aligned}$
The cost of producing 430 items is
(a) 3720
(b) 6870
(c) 3150
(d) 6800
(3) If $\lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)$, then $\mathrm{f}(x)$ is said to have a
(a) Removable Discontinuity
(b) Discontinuity of first kind
(c) Discontinuity of second kind
(d) $\mathrm{f}(x)$ is continuous
(4) The domain of $\mathrm{f}(x)=\frac{x}{x^{2}-9}$ is
(a) R
(b) $\{-3,3\}$
(c) $\{0,-3,3\}$
(d) $\mathrm{R}-\{-3,3\}$
(5) The derivative of a function $\mathrm{f}(x)$ at a point $x=\mathrm{c}$ is
(a) the angle of the chord to the curve $\mathrm{y}=\mathrm{f}(x)$ at the point (c, $\mathrm{f}(\mathrm{c})$ )
(b) the tangent to the curve $\mathrm{y}=\mathrm{f}(x)$ at the point ( $\mathrm{c}, \mathrm{f}(\mathrm{c})$ )
(c) the angle of the tangent to the curve $\mathrm{y}=\mathrm{f}(x)$ at the point $(\mathrm{c}, \mathrm{f}(\mathrm{c}))$
(d) the slope of the tangent to the curve $\mathrm{y}=\mathrm{f}(x)$ at the point $(\mathrm{c}, \mathrm{f}(\mathrm{c}))$
(6) The derivative of a constant is
(a) 1
(b) 0
(c) constant itself
(d) infinity
(7) The average cost function of the total cost function

$$
\mathrm{TC}=3 \mathrm{Q}^{2}+7 \mathrm{Q}+12 \text { is }
$$

(a) $3 \mathrm{Q}+7+\frac{12}{\mathrm{Q}}$
(b) $6 \mathrm{Q}+7$
(c) $3 \mathrm{Q}^{2}+7 \mathrm{Q}+12$
(d) $3 \mathrm{Q}+7$
(8) For a point of inflection
(a) the even order derivative should be zero and the odd order derivative should be zero.
(b) the even order derivative should be non-zero and the odd order derivative should be zero.
(c) the even order derivative should be zero and the odd order derivative should be non-zero.
(d) the even order derivative should be non-zero and the odd order derivative should be non-zero.
(9) If two rows (or columns) of a determinant are identical, the value of the determinant is
(a) zero
(b) unchanged
(c) (-1) times the value of original determinant
(d) None
(10) For matrices, the following is true
(a) $\mathrm{ABC}=\mathrm{ABC}$
(b) $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{CB})$
(c) $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
(d) $(\mathrm{AB}) \mathrm{C} \neq \mathrm{A}(\mathrm{BC})$

