Seat No. :

MH-116

May-2022

Int. M.B.A., Sem.-II

Basic Mathematics

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (i) Non-programmable scientific calculator is allowed.
 - (ii) In Section-I attempt any three questions out of five questions.
 - (iii) In Section-II attempt any eight MCQs out of ten MCQs.

SECTION-I

(Attempt any three questions out of five questions)

1. (A) (i) Find $g[f(x)]$ if $f(x) = \cos x$ and $g(x) = \frac{1}{x}$.	1
---	---

- (ii) Write down the inverse of the function $y = \{(x+1)/(x+2)\}; x > -2.$ 2
- (iii) Find the domain and range of the given function $y = \frac{x}{x^2 1}$.
- (B) (i) Define the following functions and give an example of each.Exponential function

Transcendental Function

- (ii) A manufacturer is willing to produce and supply 250 units of a product at price ₹ 5 per unit and 430 units at price ₹ 8 per unit. Assuming a linear behaviour, determine the supply function.
- 2. (A) Evaluate the following :

(i)
$$\lim_{x \to 3} \left(\frac{1}{x^2 - 5x + 6} - \frac{1}{x - 3} \right)$$

(ii)
$$\lim_{x \to 3} \frac{\sqrt{x + 6} - 3}{x - 3}$$

(iii)
$$\lim_{x \to \infty} \left(\frac{x + 9}{x + 1} \right)^{x + 5}$$

MH-116

P.T.O.

4

3

9

(B) (i) If
$$f(y) = \begin{cases} \frac{1}{2} - y & ; & 0 \le y < \frac{1}{2} \\ 1 & ; & y = \frac{1}{2} \\ \frac{3}{2} - y & ; & \frac{1}{2} < y < 1 \end{cases}$$

then discuss the continuity of
$$f(y)$$
 at $y = \frac{1}{2}$. 3

(ii) If
$$f(y) = \begin{cases} \frac{y^2 - 3y + 2}{y - 1}; & y \neq 1 \\ k & ; & y = 1 \end{cases}$$

for what value of k ($k \in R$), f(y) becomes continuous ? 2

- 3. (A) Find the derivatives of the following :
 - (i) $f(x) = (2x^2 3x)(x^2 + 4)$ (ii) $f(x) = \frac{(x+3)^3}{2x^2 + 3x + 4}$
 - $2x^2 + 3x + 4$
 - (iii) $f(x) = \sqrt{\tan(3x+1)}$
 - (iv) $f(x) = 3^x + \log\left(\frac{1}{x}\right)$
 - (B) If for $f(x) = k_1 x^2 + k_2 x + 12$, f'(4) = 15 and f'(2) = 11, then find the values of k_1 and k_2 . 2
- 4. (A) If $y = e^{3x} (ax + b)$, prove that

$$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} - 6\frac{\mathrm{d}\mathrm{y}}{\mathrm{d}x} + 9\mathrm{y} = 0$$

(B) (i) Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing or decreasing.

(ii) Suppose the demand function of some article is p(x) = 75 - 2x and the cost function is $C(x) = 350 + 12x + \frac{x^2}{4}$, find the number of units and the price at which the total profit is maximum. What is the maximum profit ?

MH-116

12

6

4

5. (A) (i) Solve the following equations by Cramer's Rule :

$$x + y + z = 3; 2x + 3y + 4z = 9; x + 2y - 4z = -1$$
 4

(ii) If
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 1 & 6 \\ 7 & 0 & 2 \end{pmatrix}$$
; $B = \begin{pmatrix} 4 & -1 & 5 \\ 6 & 2 & 0 \\ 5 & 1 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & 1 & 0 \\ 4 & -5 & 2 \\ 3 & 0 & 1 \end{pmatrix}$, find (AB - 2C). 4

(B) Solve the following equations by matrix inversion method :

$$x + y + z = 4$$
; $2x - y + 3z = 1$; $3x + 2y - z = 1$ 6

SECTION-II

(1) If $f(x) = x^2 - x - 1$ and g(x) = x - 1, then f[g(x)] is

(a)
$$x^2 - 3x + 1$$

(b) $x^4 - 2x^2 + x$
(c) $x^2 - x - 2$
(d) $x^2 - 2$

(2) The total cost function C(x) of producing x items is given by

$$C(x) = \frac{1000 + 5x, \text{ when } 0 \le x \le 500}{2000 + 4x, \text{ when } 500 < x \le 2000}$$

The cost of producing 430 items is

(3) If $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$, then f(x) is said to have a

- (a) Removable Discontinuity (b) Discontinuity of first kind
- (c) Discontinuity of second kind (d) f(x) is continuous

(4) The domain of
$$f(x) = \frac{x}{x^2 - 9}$$
 is

- (a) R (b) $\{-3, 3\}$
- (c) $\{0, -3, 3\}$ (d) $R \{-3, 3\}$

MH-116

P.T.O.

8

- (5) The derivative of a function f(x) at a point x = c is
 - (a) the angle of the chord to the curve y = f(x) at the point (c, f(c))
 - (b) the tangent to the curve y = f(x) at the point (c, f(c))
 - (c) the angle of the tangent to the curve y = f(x) at the point (c, f(c))
 - (d) the slope of the tangent to the curve y = f(x) at the point (c, f(c))
- (6) The derivative of a constant is
 - (a) 1 (b) 0
 - (c) constant itself (d) infinity
- (7) The average cost function of the total cost function

TC =
$$3Q^2 + 7Q + 12$$
 is
(a) $3Q + 7 + \frac{12}{Q}$ (b) $6Q + 7$

(c)
$$3Q^2 + 7Q + 12$$
 (d) $3Q + 7$

- (8) For a point of inflection
 - (a) the even order derivative should be zero and the odd order derivative should be zero.
 - (b) the even order derivative should be non-zero and the odd order derivative should be zero.
 - (c) the even order derivative should be zero and the odd order derivative should be non-zero.
 - (d) the even order derivative should be non-zero and the odd order derivative should be non-zero.
- (9) If two rows (or columns) of a determinant are identical, the value of the determinant is
 - (a) zero
 - (b) unchanged
 - (c) (-1) times the value of original determinant
 - (d) None
- (10) For matrices, the following is true
 - (a) ABC = ABC (b) (AB)C = A(CB)
 - (c) (AB)C = A(BC) (d) $(AB)C \neq A(BC)$