Seat No. : \qquad
JG-121
January-2021

B.Sc., Sem.-V

CC-301 : Physics
(Mathematical Physics, Classical Mechanics, Quantum Mechanics) (Old Course)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Wear mask and keep safe distance to each other.
(2) Symbols have their usual meaning.

SECTION - I
Answer any three.

1. (A) Separate the Helmholtz equation in Cartesian coordinates.
(B) Using the method of separation of variable, separate the diffusion equation into space and time parts.
2. (A) Separate the Helmholtz equation in Spherical polar coordinates.
(B) Write a notes on differential equations occurring in different branch of physics.
3. (A) Solve, $\frac{\mathrm{d}^{2} y}{d x^{2}}+\left(\tau-x^{2}\right) y=0$, where τ is constant, using the power series method.
(B) Check the nature of singularity of equation
$x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+\frac{\mathrm{dy}}{\mathrm{d} x}+\left(x^{2}-\mathrm{m}^{2}\right) \mathrm{y}=0$ for the point at infinity.
4. (A) Solve, $\frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+2 y=0$, using the power series method.
(B) State and prove Wronskian theorem.
5. (A) What are Constraints ? Explain giving the examples types of constraints. 7
(B) Obtain D'Alembert's principle. 7
6. (A) Establish (Derive) a relation between the rate at which work done by the torque and the rate of change of kinetic energy with respect to time.
(B) Obtain a general expression for kinetic energy and explain the significance of three terms involved in it.
7. (A) Derive an expression for the energy eigen values of the simple harmonic oscillator.

7
(B) Write a notes on Ladder operator.
8. (A) Derive energy eigen functions of harmonic oscillator.
(B) Explain parity operator and show that for all $\Psi, \mathrm{PL}_{\mathrm{z}}=\mathrm{L}_{\mathrm{z}} \mathrm{P}$.

SECTION - II

9. Answer any eight in short.
(1) Write ∇^{2} for cylindrical coordinate system.
(2) Write expressions for parabolic coordinates.
(3) Write expressions for inverse transformation for parabolic coordinates.
(4) Write scale factors for parabolic coordinates.
(5) Two solutions of second order differential equation y_{1} and y_{2} are linearly independent then write general solution for it.
(6) Define ordinary point and singular point.
(7) Define regular singular and irregular singular point.
(8) Write general solution of $x^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}+x \frac{\mathrm{dy}}{\mathrm{d} x}+\left(x^{2}-\frac{1}{4}\right) \mathrm{y}=0$.
(9) Define cyclic coordinates.
(10) Define degrees of freedom.
(11) Write two constraint equations for a simple pendulum moving in $x-y$ plane.
(12) Define rigid body.
(13) In three dimensions write the differential operators P and E.
(14) $[x, \mathrm{p}]=$ \qquad . (Fill in the blank)
(15) What is coherent states?
(16) Define zero-point energy.
