E295-3

## B. Sc. Semester V Examination, Dept Jan 202 | Subject: STATISTICS (Old Course) Paper - STA - 301

Paper Name: Distribution Theory - I

Date: / /2020 Time: 2 Hours Marks: 50
Instructions

- 1. There are two sections in this question paper.
- 2. All questions in Section I carry equal marks.
- 3. Attempt ANY THREE questions from Section I.
- 4. Section-II is compulsory.
- 5. Figures to the right indicate full marks of the questions/sub-questions

## Section - T

## Attempt ANY THREE QUESTIONS from SECTION - I

- Q. 1 a State probability mass function of negative binomial distribution and obtain its mean (07) and variance of negative binomial distribution.
  - b Obtain poisson distribution as a limiting case of negative binomial distribution. (07)
- Q. 2 a If a random variable X follows geometric distribution, then in usual notations, derive (07) moment generating function of X.
  - b In usual notations, obtain recurrent relation for the central moments of negative (07) binomial distribution.
- Q. 3 a What is the purpose of truncation in theory of probability distribution?

  Derive mean and variance of truncated poisson distribution, truncated at X=0.
  - b For a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , derive mean of truncated normal distribution to the right X=b.
- Q. 4 a Derive probability mass function of truncated poisson distribution, truncated at X = 0. Obtain its mean and variance. (07)
  - b For a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , derive the truncated (07) normal distribution to the right of X = b.
- Q. 5 a In usual notations, derive the recurrent relation for the central moments of power series distribution. (07)

PTO

- b For power series distribution, in usual notations, derive recurrent relation for (07) cumulants.
- Q. 6 a For binomial distribution, using power series distribution, obtain moment generating function and first two cumulants. (07)
  - b Use power series distribution to derive the moment generating function of poisson (07) distribution. Also, find its mean and variance.
- Q. 7 a Explain term: "order statistics".

  If probability density function a random variable X is  $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$  then obtain the probability distribution of the smallest order.
  - b In usual notations, derive the joint probability density function of order statistics. (07)

OR

- Q. 8 a Obtain the distribution of the smallest and the largest order statistics. (07)
  - b If probability distribution function of a random variable X is (07)

$$F(x) = \begin{cases} 1 - e^{-x}, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Obtain the probability density function of the largest order statistics and a sample range.

## Section - II

- Q. 9 Answer ANY EIGHT (08) from following (08)
- I State mean and variance of negative binomial distribution. Also, state the relation between mean and variance of negative binomial distribution
- 2 State memoryless property of geometric distribution.
- 3 State one use of truncation.
- State probability density function of truncated normal distribution, truncated to the left of X=a. Also, state its mean and variance.
- 5 State mean and variance of power series distribution.
- State the value of  $f(\theta)$ , for which power series distribution gives poisson distribution.
- For a negative binomial distribution, using power series distribution, obtain state the cumulant generating function.
- State mean and variance of *geometric distribution* as a case of *power series distribution*.
- 9 State use of order statistics.
- State the probability density function of the smallest order statistics when a random variable X follows Rectangular distribution R(2,5).