	Seat No. :	
		LG-108 April-2014
		B.Sc. SemVI
		CC-310: Microbiology
		(Fermentation Technology)
Hour	·s]	[Max. Marks: 70
ons :	(1)	All questions carry equal marks.
	(2)	Figures on right indicate marks of each question.
	(3)	Write the number of question correctly in the margin.
	(4)	Draw neat diagrams if necessary.
wer tl	ne foll	lowing (any two):
Defi	ne str	rain improvement and explain main targets of strain improvement.
	at are	e auxotrophs? Explain the role of auxotrophic mutants in lysine n.
	cribe proce	how properties other than yield can be modified for commercial success ess.
Exp	lain h	ow industrially important organisms are preserved.
wer th	ne foll	lowing (any two):
Wha	at is D	OSP ? How is the entire process designed ?
Desc	cribe	filtration as a method of cell harvesting during DSP.
Exp	lain tł	he cell disruption methods used in DSP.
Des	cribe	the liquid-liquid extraction method of product concentration and

2. Answer the following (any two):

Answer the following (any **two**):

Time: 3 Hours]

Instructions:

(b)

(c)

(d)

1.

- What is DSP? How is the entire p
- (b) Describe filtration as a method of

Explain the cell disruption method (c)

- Describe the liquid-liquid extraction method of product concentration and purification.
- 3. Answer the following (any **two**):

14

- Explain how pyrogen testing is done in pharmaceutical industries.
- Give an overview of clean room environment.
- Explain in brief the methods used for disposal and treatment of effluent in (c) industries.
- Describe the scale up process of fermentation industry. (d)

LG-108 1 P.T.O.

- 4. Answer the following (any **two**):
 - (a) Explain strain improvement and recovery with reference to Penicillin production.
 - (b) Explain importance of media composition and mechanism of Citric acid fermentation.
 - (c) Describe fermentative production of bacterial Amylase.
 - (d) Describe fermentative production of Ethanol.
- 5. Answer the following in **1-2** lines only:

14

14

- (1) The yield of which product is increased by modifying cell permeability?
- (2) Which mutants are isolated by gradient plate technique?
- (3) What are constitutive mutants?
- (4) Name two products produced by rDNA technology.
- (5) What are colligends?
- (6) Give names of two coagulating agents.
- (7) Name the techniques used in final stages of product formulation.
- (8) Name two chromatographic techniques used in product purification.
- (9) What is containment?
- (10) What is GILSP?
- (11) As components of quality assurance, what do GMP and SOP stand for ?
- (12) Give the importance of positive controls in sterility testing.
- (13) Name the organism used for bioassay of Penicillin.
- (14) Name the fungi used for production of Amylase.

LG-108 2