Seat No. : _____

LF-110 April-2014 B.Sc. Sem.-VI CC – 309 : Mathematics (Analysis – III)

Time : 3 Hours]

Instructions : (1) All questions are compulsory.

- (2) Write the question number in your answer sheet as shown in the question paper.
- (3) Figures to the right indicate marks of the question.

1. (a) Prove that each closed sphere is a closed set in any metric space X.

OR

Let X be a complete metric space and let $\{f_n\}$ be a decreasing sequence of nonempty subsets of X such that $d\{f_n\} \to 0$. Then prove that $F = \bigcap_{n=1}^{\infty} f_n$ contains exactly one point.

(b) Prove that BdryA is closed set.

OR

Let $x_n = \frac{1}{n}$, $n \in \mathbb{N}$ then show that $\{x_n\}$ is convergent. Also find its limit point.

2. (a) Let x and y be two metric spaces and f be a mapping of x into y; then prove that f is continuous if and only if $f^{-1}(G)$ is open in x whenever G is open in y. 7

OR

The metric space (x, d) is compact if and only if every sequence of points in x has a subsequence converging to a point in x.

(b) If f is a continuous real valued function on the closed and bounded interval [a, b] then prove that f takes every value between f(a) and f(b).7

OR

1

Prove : The function f : (0, 1) \rightarrow R defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.

LF-110

P.T.O.

7

[Max. Marks: 70

7

3. (a) Let (f_n) be a sequence of continuous function on E⊂C converging uniformly to f on E, then prove that f is continuous on E. Justify the converse of this theorem.

OR

Let f_n satisfy

- (i) $f_n \in D[a, b]$
- (ii) $f_n(x_0)$ converges for some $x_0 \in [a, b]$
- (iii) f'_n converges uniformly on [a, b] then prove that (a) f_n converges uniformly on [a, b] to a function f and (b) $f'(x) = \lim_{n \to \infty} f_n'(x)$.

7

7

7

(b) To give an example to show that $\lim_{n \to \infty} \int f_n(x) dx \neq \lim_{n \to \infty} \int f_n(x) dx$

OR

Show that $f_n(x) = n^2 x^n (1 - x), x \in [0, 1]$ converges pointwise but not uniformly to a function which is continuous on [0, 1].

4. (a) Let $f(x) = \sum a_n x^n$ be a power series with radius of convergence 1, if the series converges at 1, then prove that $\lim_{x \to 1} f(x) = f(1)$. 7

OR

Let $f : [0, 1] \to R$ be continuous. Then prove that there exists a sequence of polynomial the Bernstein polynomials $B_n f$ such that $B_n f \to f$ uniformly on [0, 1].

(b) Show that for
$$-1 < x < 1$$

 $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \cdots$ and $\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$
OR

Discuss the radius of convergence of following series :

(i)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$$

LF-110

- 5. Give the answer in short : (Any seven)
 - (1) Define open sphere.
 - (2) Give an example to show that the arbitrary intersection of open sets is not open.
 - (3) Find the interior of
 - (i) The set of all integers I
 - (ii) The set of all real number R
 - (4) Find the derived set of
 - (i) A = (2, 3)
 - (ii) $A = \{z \mid z \mid < 1\}$
 - (5) Prove that [0, 1] is compact.
 - (6) Define uniformly continuous.
 - (7) Say : The metric space $X = R \{0\}$ is connected or disconnected.
 - (8) For which value of x the geometric series $\sum_{n=0}^{\infty} x^n$ is convergent ?
 - (9) For which value of α the series $s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^{\alpha}}$ is uniformly continuous on [-1, 1]

LF-110